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ABSTRACT 

 

SYNTHESIS OF SUBSTITUTED PYRROLO[2,3-d]PYRIMIDINES AS 

MICROTUBULE-BINDING AGENTS AND HSP90 INHIBITORS 

 

 

 

By 

Lu Lin 

May 2013 

 

Dissertation supervised by Professor Aleem Gangjee, Ph.D. 

 An introduction, background and recent advances in the areas of microtubule-binding 

agents and heat shock protein 90 (HSP90) inhibitors as anticancer agents are briefly 

reviewed. The work in this dissertation is centered on the synthesis of substituted 

pyrrolo[2,3-d]pyrimidines as potential anticancer agents that act via microtubule 

inhibition or HSP90 inhibition. 

Microtubule-binding agents are effective against a broad range of tumors and lymphomas 

and have been common components of combination cancer-chemotherapy in the clinic. 

Despite the unparalleled success, drawbacks among microtubule-binding agents such as 

multi-drug resistance, dose-limiting toxicity, poor pharmacokinetic profile and high cost 

have supported the sustaining momentum in searching for novel agents of this class.  
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The research on microtubule-binding agents in this dissertation was initiated by an 

unexpected discovery. The lead compound, a 4-N-methyl-4’-methoxyaniline-substituted 

pyrrolo[2,3-d]pyrimidine, was found to inhibit the majority cancer cell lines in the NCI-

60 panel at sub-micromolar concentration. The COMPARE analysis based on the activity 

profile indicated microtubule inhibition as the main mechanism of action of this 

compound, and was later confirmed through multiple assays. Further, the lead compound 

displaced 70% of [
3
H]colchicine from tubulin at a concentration of 5 μM, and was 

identified as a colchicine-site binder. The compound has also shown unabated or even 

increased activities against several drug-resistant cancer cell lines, especially the cell 

lines overexpressing P-glycoprotein or βIII-tubulin. In addition, the compound has 

favorable physicochemical properties such as high water solubility as its hydrochloride 

salt. 

Based on the preliminary data and molecular modeling, a hypothesis on the relationship 

between binding affinity and the lowest-energy conformation of pyrrolo[2,3-

d]pyrimidines was proposed. To test the hypothesis and search for compounds with 

improved potency, 38 pyrrolo[2,3-d]pyrimidine analogs in six series were designed and 

synthesized. The biological evaluations of these compounds are currently in progress at 

the time this dissertation is submitted. 

HSP90 is one the molecular chaperones that assist the proper folding of the newly 

synthesized polypeptides and proteins. The majority of its client proteins are signal 

transducers with unstable conformations, which play critical roles in growth control, cell 

survival and development. The expressions of these proteins in normal cells were much 

less than cancer cell, making HSP90 a viable target for cancer chemotherapy. As of 2012, 
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there are 16 HSP90 inhibitors in clinical trial, among which four are based on the purine-

scaffold. All the compounds in clinical trials bind to or overlap with the ATP site on the 

N-terminal of HSP90. 

The pyrrolo[2,3-d]pyrimidine scaffold is structurally close to purines. In the design of 

receptor tyrosine kinase (RTK) inhibitors, Gangjee et al. have shown that properly 

functionalized pyrrolo[2,3-d]pyrimidines bind to the ATP site and achieve high degrees 

of selectivity. This was partly attributed to the incorporation of substitution patterns that 

are impossible on the purine scaffold. Based on these previous findings and the 

established SAR of the two purine derivatives in clinical trials (PU-H71 and BIIB021), 

18 substituted pyrrolo[2,3-d]pyrimidines in three series (in connection with this 

dissertation) were designed and synthesized. The biological evaluations of these 

compounds are currently in progress. 
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I. BIOLOGICAL REVIEW 

1) Microtubule-binding agents as anticancer drugs 

1.1) Structures of microtubules 

Microtubules are components of the cell skeleton.
1
 In addition to mechanical support, 

microtubules play critical roles in numerous vital cellular events such as cell division, 

trafficking, signaling and migration.
1, 2

 The proper functioning of the microtubules, 

particularly during mitosis, depends on exquisite dynamics that are highly sensitive to 

chemical intervention.
2
 For this reason, microtubule-binding agents such as vinca 

alkaloids and taxanes possess potent inhibitory activities against a broad range of cancers. 

Drugs targeting microtubules are highly successful in clinic and have been integrated into 

the therapeutic regimens against both solid tumors (breast, ovarian, non-small-cell lung 

cancer and Kaposi’s sarcoma) and hematological malignancies (non-Hodgkin's 

lymphomas).
1, 2

  

 

Figure 1 Schematic representation of microtubules
2
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Microtubules are tube like protein filaments assembled from individual tubulin dimers. 

The dimer, present in cytoplasm in soluble form, consists of one α- and one β-tubulin 

peptide (Figure 1).
2
 Each tubulin has a molecular weight of 55 kDa.

1
 The tubulin dimers 

polymerize ―head-to-tail‖ between the α- and β-tubulin into the protofilaments, forming 

the wall of the tube like structure. The resulting microtubule ―tube‖ consists of 13 

protofilaments laterally and has an outer diameter of 24 nm. The length of certain 

microtubules can extend up to 25 µm. 

 

Figure 2 3D reconstruction of microtubule through cryoelectron microscopy
3
 

The structural details of the microtubule are directly observable through the 

reconstructed cryoelectron microscopy (Figure 2).
3
 Small nano-size pores exist on the 

microtubule ―walls‖ between the interfaces of α- and β-tubulins. 
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1.2) Dynamics of microtubules 

 

Figure 3 Polymerization dynamics and the GTP cap
1
 

The polymerization of tubulins follows a nucleation-elongation mechanism.
1
 In this 

process, a short microtubule nucleus is formed slowly, followed by the rapid elongation 

through the reversible, non-covalent addition of the soluble tubulin dimers. The 

polymerization is driven by the hydrolysis of GTP upon the attachment of the GTP-

bound tubulin dimer to the ends of the microtubule (Figure 3). Prior to attachment, GTP 

binds to the β-tubulin and the dimer switches to a straight conformation that promotes the 

polymerization.
4, 5

 Delayed hydrolysis of the GTP results in the formation of a ―GTP-

cap‖, which contains GTP or GDP with unreleased phosphate (GDP-Pi). The GTP-cap 

stabilizes the open-sheet conformation of the growing microtubule end ((+)-end) and 

prevents microtubule shrinkage and catastrophe.
6, 7

 The size of the cap depends on the 

polymerization rate but in most cases it is no longer than a single layer of tubulin.
1, 8

 The 

hydrolysis of GTP occurs after the tubulin dimer is integrated into the microtubule. At the 
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final stage of the polymerization, the cap dissociates and leaves a microtubule core of β-

tubulin bound with GDP. However, if the GTP-cap is not formed, the relatively unstable 

core of the microtubule is exposed and depolymerization proceeds rapidly.
1, 8

 Controlling 

the accessibility and conformation of tubulin dimers is the most direct way to regulate the 

dynamics of microtubules.
8
  

 

Figure 4 Dynamic instabilities of the microtubules
1
 

Microtubules are highly dynamic structures.
1, 8

 The force generated through elongation 

and shrinkage is the energy source for the microtubules to carry out its functions. 

Microtubules display two major types of non-equilibrium dynamics in vitro and in cells.
1
 

The first type is called ―dynamic instabilities‖ (Figure 4). This process is defined by four 

main factors: 1) the rate of growing; 2) the rate of shrinking; 3) the frequency of the 

―catastrophe‖ event (transition from the growing or paused state to shrinking) and 4) the 

frequency of the ―rescue‖ event (transition from shrinking to growing or pause. The β-

tubulin-exposed (+)-end has a higher rate of polymerization than the α-tubulin-exposed (-

)-end. 
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Figure 5 Treadmilling of the microtubules
1
 

The second type of the non-equilibrium dynamics is called ―treadmilling‖. During 

treadmilling, the plus-end of the microtubule extends and minus-end shrinks in equivalent 

amount (Figure 5). The effect of this dynamics is a net flow of the tubulins from the (-)-

end to the (+)-end.  

 

Figure 6 Microtubules changes during cell cycle;
9
 microtubule shown in green and 

DNA shown in blue 
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The rate of microtubule dynamics changes throughout the cell cycle (Figure 6).
9
 The 

interphase cells have the slowest dynamics. The rate accelerates when the cells enter the 

metaphase, during which the formation of the microtubule spindles drives the dynamic 4- 

to 100-times faster. The microtubule dynamics at this stage is highly delicate and 

extremely sensitive to chemical interventions. Microtubule-binding agents or tubulin-

binding agents (TBAs) disrupt the microtubule dynamics and lead to mitotic arrest at the 

anaphase, eventually resulting in cell death.
2, 9

 

 

1.3) Three major classes of microtubule-binding agents 

One notably feature of the microtubule-binding agents is their vastly diverse 

structures.
2
 Most of these compounds are natural products, which plants or animals use to 

wage ―chemical warfare‖ against the competitors and predators. In cancer chemotherapy, 

microtubule-binding agents are mainly antimitotic agents. They inhibit malignant cell 

proliferation by interrupting the microtubule dynamics at the mitotic stage of the cell 

cycle.
2
 

     

Figure 7 Structures of vinca alkaloids and their binding site on the microtubule
1
 

N
H

N
OH

H3COOC

H3CO

N

R1
H

OH

OR3

N

R2O

                          R1           R2           R3

vinblastine      CH3       OCH3     COCH3

vincristine       CHO     OCH3     COCH3

vindesine        CH3       NH2        H

N
H

H3COOC
H3CO

N
H

OH

OCOCH3

N

OCH3O

N

H

vinorelbine



www.manaraa.com

7 
 

Most of the known microtubule-binding agents bind to three major sites on tubulin and 

accordingly they are divided into three major classes.
1, 2

 The first class is the vinca 

alkaloid, including vinblastine, vincristine, vindesine, and vinorelbine (Figure 7).
1, 2

 The 

naturally occurring vinblastine and vincristine were isolated from the leaves of 

periwinkle plant Catharanthus roseus in the 1950s. They are also the first microtubule-

binding agents discovered. For over four decades, drugs of this class have been widely 

used in clinic for cancers like leukemia, lymphomas and non-small-cell lung cancer. 

The binding site of the vinca alkaloids (―vinca domain‖) is located at the β-tubulin. 

Vinca alkaloids could bind to both soluble tubulin dimer and the microtubule (at the (+)-

end).
10, 11

 The binding between vinblastine and the soluble tubulin dimer is rapid and 

reversible.
10, 12

 The binding incurs a conformational change that promotes self-association 

of the tubulin and prevents the integration of the dimer into the microtubule.
13

 When 

vinblastine binds directly to the microtubule, the outcome is dependent on the 

concentration of the drug. At high concentrations (e.g. 10 – 100 nM in HeLa cells), 

vinblastine effectively depolymerizes microtubules and destroys the mitotic spindles.
14

 At 

low but clinically relevant concentrations (e.g. around 1 nM HeLa cells), mitosis is still 

blocked but without depolymerizing the spindle microtubules.
12

 The blocking effect 

under low concentrations is solely due to the suppression of microtubule dynamics.
12

 

Remarkably, the binding of one or two molecules of vinblastine is sufficient to reduce the 

rate of the dynamic instability and treadmilling in a single microtubule by 50%. This 

dynamic suppression also leads to the disruption of the normal assembly of the mitotic 

spindle and eventually cell death through apoptosis. 
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Figure 8 Structures of taxanes, epothilones and illustration of their binding site
1
 

The second class of microtubule-binding agents includes the taxanes and epothilones 

(Figure 8).
1, 2

 Paclitaxel, a prominent member of the taxane family, is one of the most 

important discoveries in the field of cancer chemotherapy in the twentieth century. It was 

first isolated from the bark of the pacific yew tree Taxus brevifolia in 1967.
15

 The initial 

development was slow due to the limited quantity of the compound. In 1979, it was 

revealed that unlike vinblastine, paclitaxel functions by promoting the polymerization of 

the microtubule.
16

 This surprising finding spurred pharmaceutical interest in paclitaxel. 

The scarcity of the natural source prompted synthetic chemists to develop effective 

process for large-scale production.
17

 In 1995, after three decades of development, 

paclitaxel was finally approved for clinical use. It is now a common component of the 

regimens for treating breast, ovarian, non-small-cell lung cancer and the Kaposi’s 

sarcoma.
1
 

Paclitaxel has low affinity to the soluble tubulin dimers but binds strongly to the 

microtubules. The binding site of the taxanes is also on the β-tubulin but locates in the 

interior lumen of the microtubule (Figure 8).
18

 Paclitaxel reaches the binding site by 
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H
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diffusing through the nano-size ―pores‖ on the surface of the microtubule (as shown in 

Figure 2).
19

 The binding of paclitaxel introduces a conformational change on the β-

tubulin that increases the affinity between adjacent tubulins.
19

  

The stoichiometry to promote the polymerization of microtubules is approximately 1:1 

between paclitaxel and the tubulin dimer.
20

 That is to say if a certain microtubule 

contains 20,000 tubulin units, the number of paclitaxel molecules needed to promote the 

polymerization is 10,000. This corresponds to a rather high concentration of paclitaxel. 

However, under concentrations ten times lower, paclitaxel can effectively stabilize the 

dynamics of the microtubules without promoting microtubule polymerization.
20

 Similar 

to vinblastine, disruption of microtubule dynamics by paclitaxel under low concentrations 

leads to mitotic block without changing the mass of the microtubules.
21

 For example, in 

HeLa cells the IC50 for paclitaxel to block mitosis is 8 nM and no increase in microtubule 

mass was observed with concentrations below 10 nM.
22

 On the other hand, the 

concentration of paclitaxel to increase the microtubule mass in HeLa cells by 50% is 80 

nM.
22

 

Epothilones, originally identified as metabolites produced by the soil-dwelling 

myxobacterium Sorangium cellulosum, act in a similar mechanism as the taxanes.
23

 Their 

binding sites are overlapped but non-identical.
24

 Ixabepilone (Figure 8) was approved for 

the treatment of drug-refractory metastatic breast cancer in 2007. Epothilone B and 

ixabepilone have also shown activities against taxane-resistant metastatic breast cancer 

and non-small-cell lung cancer in clinical trials, alone or in combination with other 

drugs.
25, 26

 In some types of cancer, epothilones are preferred over taxanes to overcome 

drug resistance.
27
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Figure 9 Structures of the colchicine-site binding agents and their binding site
1
 

The third class of the microtubule-binding agents, represented by colchicine, is a 

collection of structurally diverse compounds (Figure 9).
1, 2

 Colchicine is a toxic natural 

product extracted from the plants of the Colchicum genus. For three thousand years, it has 

been used for the treatment of rheumatism and swelling in some parts of the world.
28

 

Colchicine is mainly used for treating gout and familial Mediterranean fever today. 

The compounds in this class share a common ―colchicine site‖ site on β-tubulin at the 

interface between the α- and β- tubulins.
29

 Similar to vinca alkoloids, colchicine-site-

binding agents depolymerizes the microtubules at high concentrations and disrupts 

microtubule dynamics at low concentrations.
29

 However, the way in which colchicine 

binds to the microtubule is different from vinblastine. Colchicine binds to the soluble 

tubulin dimer, incurs a conformational change and forms the colchicine-tubulin complex. 

The complex is then integrated into the microtubule ends.
30

 The ends with the complex 

are still able to grow, but their dynamics are greatly suppressed. 

In addition to the antimitotic effect, some colchicine-site-binding agents are also 

potent vasculature-disrupting agents (VDA). Tumor vasculature is essential for tumor 

growth and is readily accessible to drugs in blood circulation. Antiangiogenic mechanism 
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is an established approach to target the tumor vasculature.
31

 Antiangiogenic drugs are 

mainly receptor tyrosine kinase (RTK) inhibitors and are widely used in the clinic as 

antitumor agents for the past decade.
31

 Another way to target the tumor vasculature is to 

destroy the existing blood vessel through VDA. Combretastatin A-4 phosphate (CA-4-P) 

rapidly depolymerizes the microtubules of endothelial cells in vitro at a concentration of 

0.1 – 1 μM and leads to cell detachment within minutes.
32

 The cells show no signs of 

apoptosis. In studies on rodents, CA-4-P reduces 95% of the blood flow to the tumor 

within one hour, along with increased vascular permeability and hemorrhage of 

peripheral vessels.
33

 Based on this property of some of the colchicine-binding agents, 

both combretastatin A-4 (CA-4) and CA-4-P have been developed as anti-vascular agents 

and are in clinical trials.
34, 35

 One encouraging finding from these clinical trials is that the 

VDA showed fairly high selectivity for tumor vasculature over normal blood vessels.
36

 

The source of this selectivity was suggested to lie in the differences between the mature 

vasculature of normal tissues and the immature or forming vasculature of tumors.
33

 The 

actin cytoskeleton in endothelial cells of immature vasculature is underdeveloped, which 

is likely to make the cells more susceptible to anti-microtubule intervention.
37

 In addition, 

the differences in the endothelial cell proliferation rate may also be contributing factor to 

the observed selectivity.
33
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Figure 10 Examples of microtubule-binding agents with novel binding sites 

In addition to the three major classes described above, there are microtubule-binding 

agents that do not bind to or overlap with any of the three sites.
1, 2

 Examples of such 

compounds include estramustine, noscapine, laulimalide and the taccalonolides (Figure 

10). Estramustine and noscapine are microtubule-depolymerizing agents like vinca 

alkaloids and colchicine-site binders while laulimalide and taccalonolides promote 

microtubule polymerization in a similar way to taxanes and epothilones.
38-41

 Noscapine is 

in phase II clinical trial for the treatment of multiple myeloma (ClinicalTrials.gov 

identifier: NCT00912899). A number of clinical trials for the combination of 

estramustine with vinca alkaloids, taxanes and epothilones are currently in progress 

(reports available at ClinicalTrials.gov).
42

  

Surprisingly, synergistic effects were observed in the combinations of estramustine 

with vinblastine or paclitaxel.
42, 43

 Extensive cell assays and in some cases clinical trials 

indicated that the synergy among the microtubule-binding agents is pervasive: they could 
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act synergistically in suppressing microtubule dynamics.
1
 Although the cause for the 

synergy is not well understood, its therapeutic value is been actively explored in multiple 

clinical trials (reports available at ClinicalTrials.gov). 

 

1.4) Toxicities of microtubule-binding agents 

Several highly potent microtubule-binding agents have failed in the early stages of 

clinical trials due to toxicities. Recent examples include discodermolides and 

cryptophycin 52 (LY355703).
44, 45

 Neurological toxicity is the most prominent dose-

limiting side effect shared by all microtubule-binding agents.
2
 This potentially severe and 

dose-accumulative side effect usually appears as a painful peripheral axonal 

neuropathy.
46

 The impact of this can persist for several years after the end of treatment. 

The reasons for this nervous-system-preferred toxicity are uncertain. However, the 

relative abundance and sensitivity of the neuronal microtubules could be the cause.
2
 

Other common toxicities of microtubule-binding agents include myelosuppression and 

neutropenia. The myeloid toxicity, which is usually reversible, is seen in vinca alkaloids 

and taxanes.
47, 48

 Neutropenia was observed in several combination chemotherapy clinical 

trials with other drugs and was mostly manageable.
49-51

  

 

1.5) Resistances to microtubule-binding agents 

Multiple-drug resistance (MDR) is a common cause in cancer chemotherapy failures.
52

 

The microtubule-binding agents are no exception.
2, 9

 The main resistance mechanisms 
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among this category of drugs are drug efflux by ATP binding cassette (ABC) proteins 

and the alterations of the microtubules. 

Membrane efflux by ABC proteins such as P-glycoprotein (Pgp) was identified as the 

primary mechanism of resistance against vinca alkaloids and taxanes in vitro.
53

 For 

example, the potency of paclitaxel was reduced over 800 times against Pgp-

overexpressing SK-OV-3 MDR-1-6/6 cell lines than the parental cell lines.
54

 The 

expression of the ABC pumps is frequently correlated with lower responses to 

microtubule-binding agents. Intriguingly, the combination of Pgp inhibitors with the 

microtubule-binding agents failed to reverse the resistance in clinical trials.
55

 The clinical 

relevance of this resistance mechanism is still under debate due to the limited data on the 

ABC pumps in cancer patients.
56

  

The alterations of the microtubules include changes in the microtubule-associated 

proteins (MAP) or the expression of certain isotypes of tubulin in the cells. The binding 

of MAPs stabilizes the microtubules. Depending on the type of the microtubule-binding 

agent, varying levels in the expression of the MAPs such as tau, MAP2 and MAP4 could 

result in resistance or increased activity.
9
 For example, the down-regulation of the MAP4 

led to resistance against paclitaxel but increased response to vinblastine.
57, 58

 Up-

regulation of MAP4 did the reverse. 

More than 13 different isotypes of tubulins are known to be involved in the assembly 

of the microtubules. Among them, increased levels of class III β-tubulin (βIII-tubulin) is 

of paramount concern since it is closely associated with resistance against taxanes in lung, 

breast and ovarian cancers.
59, 60

 In HeLa cell lines, the activity of paclitaxel decreased 
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five times when the cells were modified to express βIII-tubulin.
61

 It was hypothesized 

that resistance of taxanes was due to loss of a key Ser275 on the βIII-tubulin, which 

facilitates the diffusion of paclitaxel across the pores.
62

 However, this theory could not 

explain the βIII-tubulin-mediated resistance in vinca alkaloids.
60

 In addition, βIII-tubulin 

was shown to mediate the resistance against a broad range of drugs with different action 

mechanisms of action.
63

 Several studies confirmed the essential role played by βIII-

tubulin in protecting cells from the drug-induced genotoxic stresses.
64-66

 It is conceivable 

that the role of βIII-tubulin in cancer may extend beyond drug resistance and it will 

continue be an active area of research. 
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2) Heat shock protein 90 (HSP90) inhibitors as anticancer agents 

Molecular chaperones are proteins that assist the proper folding of the newly 

synthesized polypeptides and proteins.
67

 They also minimize the risk of the protein 

aggregation inside the cell. Many chaperone proteins are termed heat shock proteins 

(HSP).
68

 The ―heat shock‖ in the name is a broad indication of environmental stresses. 

When the cell is challenged with stresses like elevated temperature, the expression of 

HSP is dramatically increased to restore the normal protein-folding environment.
68

 HSPs 

are named according to their molecular weights, e.g. HSP90 is the 90 kDa HSP. 

Following the discovery of the heat-shock response in the 1960s, major families of HSPs 

such as HSP33, HSP60, HSP70, HSP90 and HSP100 have been identified.
69

 The ―heat 

shock‖ name does not preclude their expression under normal conditions. HSP90 

accounts for 1 to 2% of the total cell protein content even under normal conditions.
68

 

HSP90 is ubiquitous and vital for all eukaryotes tested. It is also unique in the sense 

that it is rarely involved in the biogenesis of most polypeptides.
70

 Instead, the majority of 

its client proteins are signal transducers with unstable conformations, which play critical 

roles in growth control, cell survival and development.
71

 Some of these proteins are 

known to have direct involvement in cancer. Examples are receptor tyrosine kinases, 

serine/threonine kinases and steroid hormone receptors in uncontrolled proliferation, 

immortalization telomerase, AKT in impaired apoptosis, matrix metalloproteinase in 

metastasis. Elevated cellular levels of HSP90 and/or HSP70 are common in both solid 

tumor and hematological malignancies.
72-80
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2.1) Structure and functions of the heat shock protein 90 

 

Figure 11 Orthogonal views of HSP90 monomer
81

 

HSP90s exist predominantly in homodimers. Each monomer consists of three domains 

(Figure 11). The N-domain (residues 1 – 216) is formed by a twisted β-sheet and a 

cluster of α-helices, with the ATP-binding site and co-chaperon-interacting motifs in 

between. The middle segment contains a large three-layer α-β-α domain (residues 262 – 

444) and a small α-β-α domain (445 – 524). The amphipathic loop (residues 329 – 339) 

of the middle segment interacts with the client protein during the chaperoning process. 

The C-domain (residues 525 – 709) is involved in the dimerization of the monomers. 
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Figure 12 The middle segment before (left) and after (right) ATP binding
81

 

The operation of the Hsp90 dimer follows a ―molecular clamp‖ mechanism coupled 

with the ATPase cycle.
82

 The binding of ATP restructures the N-domain and leads to the 

closure of the ―lid‖ segment (residues 94 – 125). This movement exposes a hydrophobic 

patch centered on Leu15 and Leu18. The exposed hydrophobic patch on each monomer 

directly contacts each other and the resulting burial of the patches stabilizes the transient 

dimerization of the N-domains.
82

 This dimerization of the N-domains draws the middle 

segment of each monomer 20 Å closer, but do not contact (Figure 12).
81

 Instead, each 

middle segment interacts with the N-domain of the other monomer. The ϒ-phosphate of 

ATP is cradled in a glycine-rich loop at the end of the lid segment, making a single 

contact outside the N-domain with Arg380, which is brought to place through the 

movement of the middle segment. The ATPase is also activated through this series of 

arrangement, as a water molecule activated by Glu30, is ready to attack the Arg380-

polarized ϒ-β phosphodiester bond.
81
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Figure 13 The HSP90 chaperone cycle
83

 

The large-scale conformational changes (ATP* to ATP/ADP-Pi in Figure 13) 

experienced by HSP90 are not the sole result of ATP binding, but is also driven by client 

association.
84

 The hydrolysis of ATP causes all of the once-exposed hydrophobic motifs 

to be covered and leads to a very compact ADP-bound state.
83

 The release of the client 

proteins and co-chaperones occurs and completes the chaperon cycle. 

HSP90 has over 200 client proteins.
67

 To achieve the optimal chaperoning condition 

for each client, HSP90 recruits HSP70 and a variety of co-chaperones.
67, 68

 

Phosphorylation at certain serine residues has been linked in regulating the 

conformational switching of the chaperone complex in recent studies.
85
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2.2) HSP90 inhibitors 

Some of the HSP90 client proteins are particularly sensitive to HSP90 inhibition. Even 

low concentrations of the inhibitors could drive them into rapid degradation. These client 

proteins are usually involved in growth signaling, which are pivotal to the proliferation of 

cancer cells. In addition, mutated proteins like mutant p53 or imatinib-resistant Bcr-Abl 

are particularly dependent on HSP90.
86

 HER2 (human epidermal growth factor receptor 2) 

seems to be the most sensitive to HSP90 inhibition among those cancer-related client 

proteins.
87

 Other common cancer-related client proteins in decreasing sensitivities are 

mutant EGFR (epidermal growth factor receptor), c-Raf, Akt (Protein Kinase B), mutant 

BRAF and wild-type EGFR.
87

 

The ability to cause degradation in proteins vital to cancer proliferation has made 

HSP90 an attractive target for cancer chemotherapy. Inhibition of HSP90 results in the 

simultaneous attack on several key players in cancer progression, thus reducing the 

chance of developing resistance. In addition, HSP90 inhibitors are found to preferentially 

accumulate in cancer cells and the sensitivity of HSP90 to inhibitors in cancer cells is 

fundamentally different than in normal cells.
88-90

  

Table 1  HSP90 inhibitors in clinical trials 

Structure Name Phase Route Sponsors 

 

Tanespimycin (17-

AAG) 
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Structure Name Phase Route Sponsors 

 

Retaspimycin (17-

AAG hydroquinone) 
III Intravenous Infinity 

 

Alvespimycin (17-

DMAG) 
I Intravenous 

NCI, Kosan-

BMS 

 

IPI-493 (17-AG) I Oral Infinity 

 

NVP-AUY922 II Intravenous Novartis 

 

AT13387 II Intravenous Astex 

 

STA-9090 

(ganetispib) 
II Intravenous Synta 

 

KW-2478 I/II Intravenous 
Kyowa Hakko 

Kirin 

 

XL888 I Intravenous Exelixis 

 

PU-H71 I Intravenous 
Memorial Sloan-

Kettering Center 

 

DEBIO-0932/CUDC-
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I Oral 

Debiopharm, 

Curis 
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Structure Name Phase Route Sponsors 

 

MPC-3100 I Oral Myrexis 

 

PF-4929113 (SNX-

5422) 
I Oral Pfizer 

 

BIIB021 II Oral Biogen Idec 

 

NVP-HSP990 I Oral Novartis 

(undisclosed) BIIB028 I Intravenous Biogen Idec 

 

None of the HSP90 inhibitors has been approved yet. Currently, there are 16 HSP90 

inhibitors at various stages of clinical development (Table 1).
67, 91, 92

 The first HSP90 

inhibitor entered clinical trials was tanespimycin (17-AAG, 17-allylamino-17-

desmethoxygeldanamycin), a derivative of the natural product geldanamycin.
93

 It is given 

intravenously and has recently advanced to phase III clinical trials. Retaspimycin is the 

hydroquinone analog of tanespimycin and the ease with which it is converted into the 

water-soluble hydrochloride salt provides advantages in formulation.
94

 Development of 

alvespimycin was also aimed at enhancing water solubility, but it resulted in higher 

toxicity in preclinical studies.
90

 IPI-493 is a metabolite of tanespimycin with significantly 

enhanced oral bioavailability. It is developed as the only oral drug among geldanamycin 

derivatives. 

N

N N

N

NH2

S Br

OO

N

O

OH

H
N

O

OH2N

N
N

O

F3C

O

NH2

N

N N

N

Cl

H2N N

O

N

N

NH

O

H2N

F
NO



www.manaraa.com

23 
 

The remaining HSP90 inhibitors in clinical trials are synthetic small-molecule 

compounds developed in recent years. Among them, four intravenously administrated 

compounds share the same 2,4-dihydrobenzene motif: NVP-AUY922, AT13387, STA-

9090 (ganetispib) and KW-2478.
95-98

 Other intravenous drug candidates include a tropane 

based compound XL888, purine based PU-H71 and an undisclosed structure BIIB028.
67, 

99, 100
 Purine or purine analog based compounds have been developed as orally 

bioavailable HSP90 inhibitors. Examples include DEBIO-0932/CUDC-305, MPC-3100 

and BIIB021.
101-103

 Other orally active HSP90 inhibitors in clinical trials are NVP-

HSP990 and PF-4929113.
104, 105

  

All the HSP90 inhibitors in clinical trials are reported to bind to the N-domain, 

overlapping entirely or partly with the ATP-binding site. The mechanism for HSP90 

inhibitors is not limited to the displacement of ATP and the interruption of the following 

chaperoning cycle.
106

 The inhibitor-bound HSP90 tends to recruit E3 ubiquitin ligases 

such as CHIP (carboxyl-terminus of HSP70-interacting protein) to the chaperone 

complex.
107

 Under these conditions, the misfolded client proteins are more likely to be 

degraded by proteasome.
107

  

One of the challenges in maximizing the therapeutic potential of HSP90 inhibitors is 

to identify the right cancer types that have the best response to HSP90 inhibition.
92

 It 

followed logically that the breast cancer, mostly driven by HER-2, became the primary 

target for HSP90 inhibitors.
108

 Non-small-cell lung cancer and multiple myeloma also 

have high response rates to HSP90 inhibitors, alone or in combination with other 

drugs.
109, 110

 The efficacy of HSP90 maybe more pronounced in combinations with other 



www.manaraa.com

24 
 

drugs, since the benefits of overcoming resistance, increasing response and reducing 

dose-related toxicity were frequently observed in such clinical trials.
67, 91, 108, 111
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II. CHEMICAL REVIEW 

1) Synthesis of the pyrrolo[2,3-d]pyrimidines 

There were relatively abundant reports on the synthesis of pyrrolopyrimidines in 

literature. A review on the synthesis of pyrrolopyrimidines in general is available.
112

 This 

section will focus on the reported methods that directly connected to the structures in this 

dissertation. 

Scheme 1 Synthesis of 2-amino-pyrrolo[2,3-d]pyrimidines 

 

The direct cyclization between the pyrimidine and the α-halogen aldehyde (or ketone) 

is usually the quickest synthetic route to pyrrolo[2,3-d]pyrimidines. Examples of this 

strategy are reactions between the 2,6-diamino-4-oxo-pyrimidines and α-haloaldehydes 

or ketones (Scheme 1).
113-118

 Both 5- and 6-substituted pyrrolo[2,3-d]pyrimidines could 

be obtained in concise sequences. 
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Scheme 2 Synthesis of 2-oxo or 2-thieno pyrrolo[2,3-d]pyrimidines 

 

The same synthetic method applies to the 2-oxo-6-amino-pyrimidines (Scheme 2).
119

 

In some patent literature, 2-methylthio-pyrimidine underwent the same reaction under 

similar conditions.
120-122

 Reactions with α-haloketones to give the 6-substituted 

pyrrolo[2,3-d]pyrimidines have also been reported.
123

 

 

Scheme 3 Synthesis of the 2-methyl-4-oxo-pyrrolo[2,3-d]pyrimidine 
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The direct-cyclization strategy is subject to a structural limitation: the 2-position of the 

pyrimidine must be occupied by a group able to donate a lone pair of electrons. For 

pyrrolo[2,3-d]pyrimidines without an electron-donating group at the 2-position, a de novo 

synthesis of the pyrimidine with a functionalized 5-position is usually chosen (Scheme 3). 

The cyanoethyl acetate 12 cyclizes with amidine 13 or thiourea 16 to afford pyrimidines 

14 and 17, which lead to the desired products 15 and 19.
124, 125

 

Scheme 4 Synthesis of the 6-substituted pyrrolo[2,3-d]pyrimidine 

 

Replacing the acetal 12 with a ketone affords to the 6-substituted analogs of 15 and 19 

(Scheme 4).
126

 

Scheme 5 Pd coupling followed by the 5-endo-dig cyclization 
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Palladium catalyzed coupling reactions provided direct methods to functionalize the 

pyrimidine as the precursor for the pyrrolo[2,3-d]pyrimidine. A good demonstration of 

this idea is the concise synthesis of 31 (Scheme 5), which would be otherwise be 

synthesized through 19.
127

 Replacing the TMS (Scheme 5) with other groups in the last 

5-endo-dig cyclization step would give 6-substituted pyrrolo[2,3-d]pyrimidines such as 

33.
128

 

Scheme 6 Synthesis of the 5-methyl-pyrrolo[2,3-d]pyrimidine 

 

Synthetic approaches other than ―cyclization from pyrimidine‖ have also been applied 

for shorter reaction schemes. A good example is the synthesis of the 5-methyl-2,4-

diamino-pyrrolo[2,3-d]pyrimidine 38 (Scheme 6).
129

 In this route, the meta-stable furan 

29 ring opened upon the attacking of the guanidine 37, followed by a rearrangement to 

afford the pyrrolo[2,3-d]pyrimidine 38. An alternative method would be to obtain the 4-

oxo compound 5 first, followed by its conversion to 38 in a two-step amination process. 

Scheme 7 Cyclization of the appropriate pyrrole 
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Cyclization starting with the appropriated pyrrole is another viable option for 

synthesizing pyrrolo[2,3-d]pyrimidines, especially when the desired substituents on the 

final compounds are easily introduced in the pyrrole ring as illustrated in Scheme 7.
130

 

Scheme 8 The Fischer Indole synthesis of the 5,6-disubstituted pyrrolo[2,3-

d]pyrimidine 

 

The Fischer indole synthesis has also been utilized in the synthesis of pyrrolo[2,3-

d]pyrimidines. This method is particularly efficient for 5,6-disubstitured systems 

(Scheme 8), using the appropriate pyrimidine hydrazine and a suitable ketone.
131
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2) Synthesis of the 6,7-dihydro-pyrrolo[2,3-d]pyrimidines 

Scheme 9 6,7-dihydro-pyrrolo[2,3-d]pyrimidine as the intermediate 

 

There are reports in the literature for the use of 5,6-dihydro-pyrrolo[2,3-d]pyrimidines 

as the precursor for some synthetically challenging pyrrolo[2,3-d]pyrimidines. An 

application of this strategy is the synthesis of 4-methyl-pyrrolo[2,3-d]pyrimidines 

(Scheme 9), when aromatization of the 5,6-dihydro precursor affords the pyrrolo[2,3-

d]pyrimidine.
131

  

Scheme 10  Synthesis of 4-chloro-6,7-dihydro-pyrrolo[2,3-d]pyrimidine  
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The patent literature uses a similar approach (Scheme 10), which could be used to 

functionalize the 4- and 5-positions with appropriate precursors.
132

 

Scheme 11  Reductive hydrogenation of pyrrolo[2,3-d]pyrimidines 

 

To synthesize the 5,6-dihydropyrrolo[2,3-d]pyrimidines, if the synthesis of the 

corresponding pyrrolo[2,3-d]pyrimidine is easier, a direct reduction of the pyrrole ring 

would be the optimal choice. However, for the hydrogenation reaction to succeed, it 

normally requires a strong electron-withdrawing group such as tosyl or acetyl at the N7-

position (Scheme 11).
133
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3) Synthesis of furo[2,3-d]pyrimidines 

Scheme 12  Direct cyclization to the furo[2,3-d]pyrimidines 

 

The general strategy for the synthesis of furo[2,3-d]pyrimidines share a lot in common 

with those for the pyrrolo[2,3-d]pyrimidine. The bicyclic ring could be built from either 

substituted pyrimidines or from the furans. The direct cyclization of the 2-amino-6-oxo-

pyrimidines and α-haloketones affords furo[2,3-d]pyrimidines exclusively under certain 

conditions (Scheme 12).
134

 

Scheme 13  Competition between the formation of furo- and pyrrolo[2,3-

d]pyrimidine 
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However, this reaction frequently suffers from the competing reaction that leads to the 

formation of pyrrolo[2,3-d]pyrimidines (Scheme 13).
134

 

 

Scheme 14  Synthesis of 2-substituted furo[2,3-d]pyrimidines 

 

A de novo synthesis of the pyrimidine precursors followed by a 5-endo-dig cyclization 

provides access to various 2-substituted furo[2,3-d]pyrimidines (Scheme 14).
135

 

 

Scheme 15  Cyclization from furan 

 

Cyclization from the furan is also a feasible method for the synthesis of the furo[2,3-

d]pyrimidines. As mentioned above, the furan ring tends to rearrange and form 

pyrrolo[2,3-d]pyrimidines under certain conditions, as shown in Scheme 6. However, 

careful selection of the cyclization partner leads to furo[2,3-d]pyrimidines (Scheme 

15).
135
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Scheme 16  Cyclization from substituted furans 

 

Phenyl-substituted or tetra-substituted furans tend to be more stable and are more 

commonly used as precursors for the synthesis of furo[2,3-d]pyrimidines (Scheme 

16).
135-137
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III. STATEMENT OF THE PROBLEM 

1) Microtubule-binding agents 

1.1) Drawbacks of current microtubule-binding agents 

The unparalleled broad-range anticancer potency has affored the microtubule-binding 

agents unprecedented success among cancer chemotherapeutic drugs. The ―anti-

microtubule arsenal‖ is still expanding – the introduction of eribulin and vinflunine 

(Figure 14) in 2010 demonstrates the continuing momentum in the search of new agents 

this area.
138

 

 

Figure 14 Structures of eribulin and vinflunine 

Eribulin, a synthetic analog of the marine natural product halichondrin B, was 

approved for metastatic breast cancer (MBC) that is resistant to taxanes.
139

 Vinflunine is 

a semisynthetic vinca alkaloid with higher antitumor activity, lower neurotoxicity and 

less Pgp-mediated resistance than its vinca predecessors.
140, 141

 It was approved for 

urothelial tract carcinoma that is resistance to platinum-containing regimen. Both the 
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recent new approvals and the ongoing clinical trials indicate the momentum for these 

agents is driven by the drawbacks of current microtubule-binding agents in clinic. 

One of the major drawbacks is the development of multidrug resistance (MDR), 

against which most microtubule-binding agents are ineffective.
2, 9

 Overexpression of Pgp 

has been reported in the clinical setting in a number of cancer types, particularly 

following chemotherapy.
142, 143

 In addition, Pgp expression has been linked with poor 

response to chemotherapy and could be a prognostic indicator in certain cancers.
144, 145

 

However, combining Pgp inhibitors with chemotherapeutic agents in the clinic has been 

unsuccessful.
55

 These findings indicate that novel microtubule-binding agents that are not 

substrates for Pgp would be likely to overcome this type of resistance and are actively 

sought. 

In addition to Pgp, overexpression of the βIII-tubulin is another clinically relevant 

resistance mechanism to the microtubule-binding agents.
2, 9

 The involvement of βIII-

tubulin in taxane and vinca alkaloid resistances in non-small-cell lung cancer, breast and
 

ovarian cancer is firmLy supported by clinical evidences.
59, 60

 However, resistances 

mediated by the βIII-tubulin were not usually seen among the colchicine-site-binding 

agents.
2, 9

 In cell studies, the potency loss of the colchicine-site-binding agents due to 

βIII-tubulin expression was moderate.
54

 This encouraging finding highlights the critical 

importance of developing novel colchicine-site-binding agents to overcome βIII-tubulin-

associated cancer resistances. 

The advantages of developing colchicine-site-binding agents such as combretastatin A 

(CA) are not limited to overcoming βIII-tubulin-associated resistances, they are also 
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unique as potent vascular disrupting agents.
32-35

 In addition, synergistic effects of 

microtubule-binding agents that act at different sites on the microtubule are well 

established in vitro and in vivo and such combinations are actively undergoing clinical 

developments.
25, 42-44

 To date, no colchicine-site-binding agent has been approved by 

FDA as an anticancer agent except for a rare form of thyroid cancer. The benefits of 

combining combretastatin A-4 phosphate (CA-4-P) and paclitaxel are being evaluated in 

clinical trials.
146

 Additional novel colchicine-site-binding agents are anticipated to open 

up more opportunities for monotherapy as well as synergistic combination chemotherapy 

protocols. 

All the clinically used microtubule-binding agents are derived from natural products. 

With very few exceptions, economical synthetic methods for these drugs are still evasive 

and their production still relies on precursors from natural sources. In one extreme case, 

the process for the commercial production of eribulin involves 62 steps!
138

 Thus the 

economic benefit offered by fully synthetic small-molecule microtubule-binding agents is 

significant. 

Another non-trivial problem of the currently used microtubule-binding agents, 

particularly the taxanes, is their poor physical properties, especially poor water 

solubility.
147

 Special formulations based on cremophor were developed for the 

administration of paclitaxel and ixabepilone.
147

 However, these formulations come with a 

high risk of hypersensitivity reactions and long administration time. Enormous efforts 

have been committed in modifying the structures of these large molecules to enhance 

water solubility. Thus the development of water-soluble microtubule-binding agents is 

highly desirable. 
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1.2) Discovery of lead compounds 

 

Figure 15 Lead compounds 90 and 91 

The discovery of water-soluble small-molecule microtubule-binding agents in the 

present work was somewhat serendipitous. Compounds 90 and 91 (Figure 15), both 

readily convertible to the water-soluble hydrochloride salts, were designed as RTK 

inhibitors to explore the SAR of the pyrrolo[2,3-d]pyrimidine scaffold. The biological 

evaluation of several RTK-overexpressing cancer cell lines showed poor RTK inhibitory 

activities of the two compounds. Unexpectedly, when 91 was tested in the preclinical 

screening program of the National Cancer Institute in its 60-cancer-cell-line panel, it was 

found to inhibit the proliferation of most of the cancer cell lines with a GI50 of less than 

500 nM.
54

  

To determine the mechanism of action of 91, a COMPARE analysis based on the 60-

cancer-cell-line panel data was performed.
148, 149

 Among compounds with known 

mechanisms, vincristine sulfate has the closest Pearsons correlation coefficient with 91. 

The other compounds in the ranking were vinblastine sulfate and maytansine. All these 

compounds are microtubule-binding agents, which suggested that 91 would most likely 

be an antimitotic agent as well. 
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In order to confirm that 91 was indeed a microtubule binding agent, a series of 

microtubule related assays were performed.
54

 One of the results showed that 91 caused a 

dramatic reorganization of the interphase microtubule network, which was similar to the 

effects of colchicine and CA-4-P. In the cell cycle distribution assays, 91 was observed to 

effect the same G2-M phase arrest as the paclitaxel. 

The EC50 for 91 in the microtubule depolymerization assay was 5.8 μM and it 

inhibited the proliferation of MDA-MB-435 cancer cells at an IC50 of 183 nM.
54

 In 

contrast, 90 failed to show any meaningful activities in any of the assays. 

What made 91 an excellent lead compound for further development was its impressive 

activities against both Pgp- and βIII-tubulin-overexpressing cancer cell lines. Unlike 

paclitaxel, 91 maintains most of its potency against Pgp-overexpressing cell lines and 

showed slightly better activities against βIII-tubulin-expressing cancer cell lines.
54

 

For analog optimization centered on 91, it was of paramount importance to determine 

the binding site of 91 on tubulin. In the competitive binding assay, 91 was observed to 

displace 70% of the [
3
H]colchicine at a concentration of 5 μM. In association with other 

evidences, it was confirmed that 91 was a colchicine-site binding agent 
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1.3) Hypothesis on the influence of conformation over the biological activities 

The discovery of 91 was an inspiration to extensively explore the SAR of this class of 

compounds as microtubule-binding agents. Prior to this work, there was no report on 

pyrrolo[2,3-d]pyrimidine-based colchicine-site binding agents. Co-crystal structure 

between similar structures and tubulin was also absent. However, the vast differences in 

activities between 90 and 91 in contrast with their minor structural divergence conveyed 

important information about the SAR. 

A)               B) 

91      

C)               D) 

90      

E)  
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90 

Figure 16 A) The lowest-energy conformation of 91; B) plot of energy vs. dihedral 

angle between pyrrolo[2,3-d]pyrimidine and aniline in 91; C) the lowest-

energy conformation of 90; D) plot of energy vs. dihedral angle between  

pyrrolo[2,3-d]pyrimidine and aniline in 90; E) next-lowest-energy 

conformation of 90. Units: energy in kcal/mol; green line in the plot 

indicates the current dihedral angle. Plot generated with MOE 2011.10; 

figure generated with Pymol 1.5. 

The lowest-energy conformations of 90 and 91 are very similar, with the dihedral 

angles between the pyrrolo[2,3-d]pyrimidine and aniline of 159.14
o
 and 158.68

o
, 

respectively (A – D, Figure 16). This conformation is dominant in 91 with a difference 

of over -7.5 kcal/mol. over the next lowest-energy conformation (B, Figure 16). 

However, preference of the same level is not available in 90 (D, Figure 16). In fact, the 

energy difference between the lowest- and next-lowest-conformations for 90 (E, Figure 

16) is hardly over 1.5 kcal/mol. 

    

 
89 90 91 

Chemical shift of 5-H (circled) 6.50 6.55 4.50 

 

Figure 17  
1
HNMR chemical shift of the 5-H proton in 90 and 91 
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This conformational preference was confirmed in 
1
HNMR (Figure 17). For 90, the 

chemical shift of 5-H proton in 
1
HNMR was comparable to the 4-chloro-pyrrolo[2,3-

d]pyrimidine 89. However, in 91, the chemical shift for the same proton was considerably 

lower. This phenomenon was consistent with the existence of the dominant conformation, 

which covered the 5-H in the shielding cone of the aniline phenyl ring. 

The dominance of the lowest-energy conformation in 91 can only be explained with 

the presence of the N-methyl, which is the only difference between the structures of 90 

and 91. 

 

This finding in conjunction with the differences in activities led us to propose a 

working hypothesis on the conformation and biological activity: the lowest 

conformation of 91 (and 90) is at least close to the productive binding conformation 

of the compound at the colchicine-binding site. Under this hypothesis, “locking-in” 

the productive conformation should enhance the potency. 
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1.4) Testing of the hypothesis by molecular modeling 

This hypothesis was initially tested in docking studies. The program Autodock Vina 

was selected after a few trials of available docking programs.
150

 The 3.58 Å crystal 

structure of 2-mercapto-colchicine and tubulin (PDB: 1SA0) was used as the 

macromolecule. Pre-calculation including the addition of partial charges and polar 

hydrogen were performed on both macromolecule and ligand. The native ligand in the 

crystal structure was removed prior to docking. The search space was a 40×40×40 Å
3
 

grid box covering the entire colchicine-binding site. The starting conformation of the 

ligand was randomLy generated and the number of the random seeds was over 10 billion. 

A total of nine lowest-energy binding conformations were returned. 

 

Figure 18 Superimposition of the docked conformation of 2-mercapto-colchicine 

(green) and the original crystal structure conformation (cyan); PDB: 

1SA0; figure generated with Pymol 1.5. 

A re-dock run was performed to validate of the program and the settings (Figure 18). 

Autodock Vina successfully reproduced the crystal structure conformation with RMSD 

less than 1 Å, which was lower than the general accepted cut-off limit of 2 Å.
151
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Figure 19 Lowest-energy conformation of 91 in the colchicine-binding site from the 

docked results; PDB: 1SA0; Autodock Vina; figure generated with 

Pymol 1.5. 

The settings used in re-docking were repeated to dock 91 into the colchicine-binding 

site. The lowest-energy (-7.9 kcal/mol) conformation of 91 at colchicine-binding site was 

the same as the dominant conformation in solution (Figure 19). More importantly, all the 

nine top poses with binding energy in the range of -7.3 to -7.9 kcal/mol assumed highly 

similar conformations to the dominant one, though interactions with the binding site were 

different. These findings supported the hypothesis of the relationship between the 

conformation and activities. 
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Figure 20 Overlap of 90 (white) and 2-mercapto-colchicine (cyan) at the colchicine-

binding site 

The colchicine site is able to hold structurally diverse compounds such as colchicine, 

combretastatin and 2-methoxyestradiol.
1, 2

 It is not surprising to see 90 would bind 

differently than colchicine at this relatively spacious site (Figure 20). From the docking 

result, 90 and colchicine were partly overlapped and some interactions with the binding 

pocket were shared. 
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Figure 21 Interaction plots of A) 91 and B) 2-mercapto-colchicine at the colchicine-

binding site generated by MOE 2011.10 

The interactions of 91 (docked) and the binding pocket were mainly hydrophobic in 

nature (Figure 21, A). Notably, the N-methyl was enclosed in a ―hydrophobic envelope‖ 

formed by Ala250, Leu248 and Ala316. The 2-methyl also pointed to the adjacent 

hydrophobic region surrounded by Ala316, Ile378, Val318 and Ala317. A potential 

hydrogen bond was formed between the N7-H and the backbone of Thr353. The 4-

methoxy on phenyl was in the vicinity of Lys254, Asn101 and Asn258. However, no 

explicit hydrogen bond was identified. 

Some of the hydrophobic bindings in 91 were also seen in colchicine, such as the 

interactions with Ala250, Leu248, Ala316, Ile378 and Val318 (Figure 21, B). In addition, 

colchicine formed four hydrogen bonds with the binding pocket (illustrated with arrows 
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in Figure 21, B). These hydrogen bonds might contribute to the higher potency of 

colchicine than 91. 

  



www.manaraa.com

48 
 

1.5) Analogs designed based on the hypothesis 

Compounds of Series I – VI in the present work form parts of an extensive 

exploration of SAR of the pyrrolo[2,3-d]pyrimidines as colchicine-site binding agents. 

 

  R1 R2   R1 R2   R1 Ar 

 92 CH3 3-OCH3  96 CH3 4-CH3  100 CH3 2-naphthyl 

 93 H 3-OCH3  97 CH3 4-Cl  101 H 2-naphthyl 

 94 CH3 2-OCH3  98 CH3 3,4-diCl     

 95 H 2-OCH3  99 CH3 OH     

 

Figure 22 Series I 

Compounds in Series I (Figure 22) serve two purposes. The first is to confirm the 

important of N-methyl to the activities. This purpose is fulfilled by 92 – 95 and 100 – 101. 

The second purpose is to observe the effect of different substitutions on the aniline to 

biological activity. A comparison between 91 and compounds in Series I would provide 

information on the preference of electron-donating or electron-withdrawing groups on the 

phenyl ring to biological activity. Since the 4-methoxy of 91 resided in a polar region of 

the colchicine-binding site in the docked pose, an analog with a hydrogen bond donor (99) 

is expected to be active if the docking prediction is accurate. 

 

  R1 R2 R3   R1 R2 R3 

 102 CH3 4-OCH3 H  106 CH3 2-OCH3 CH3 

 103 H 4-OCH3 H  107 CH3 4-CH3 CH3 

 104 CH3 4-OCH3 CH3  108 CH3 4-Cl CH3 

 105 CH3 3-OCH3 CH3  109 CH3 3,4-diCl CH3 

           

Figure 23 Series II 
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Series II also has two aims (Figure 23). The first is to observe the effect on biological 

activity when the 2-methyl is replaced with 2-amino (102 – 103). The second aim is to 

also check whether the involvement of a 6-methyl on the pyrrolo[2,3-d]pyrimidine 

scaffold (104 – 109) is conducive to activity. The 6-methyl was found to enhance the 

potency in structurally similar 4-N-methyl-aniline-substituted cyclopenta[d]pyrimi-

dines.
54, 61

  

 

  R1 R2 

 110 CH3 H 

 111 NH2 H 

 112 NH2 CH3 

 113 H H 

 

Figure 24 Series III 

Series III takes a step beyond the anilines to incorporate the bicyclic 6-methoxy-

tetrahydroquinoline onto the 4-position of the pyrrolo[2,3-d]pyrimidines with different 2- 

and 6-substitutions. This design focuses on the conformation of the phenyl ring. 

Compared to the N-methylaniline, the tetrahydroquinoline provides more restriction on 

the conformation of the phenyl ring, as the rotation around the N-phenyl bond is 

eliminated, thus affording a much more rigid structure than 91 but still maintaining the 

phenyl and alkyl substitutions on the N4 as in 91. 

 

   

  R 

 114 CH3 

 115 benzyl 

 116 tosyl 

 

Figure 25 Series IV 
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Series IV aims at an exploration of substitutions at the N7 position (Figure 25).  

Three compounds including two non-polar groups (methyl and benzyl) and one polar 

group (tosyl) are included. This design is based on the docking of 91, which suggests that 

the N7 substituent would extend into a region of the colchicine-binding site that consists 

of both non-polar residues (Ala317, Ala354) and a polar residue (Thr353). 

 

    

 

 

     

 R    

117 CH3    

118 NH2   (±)-119 

 

Figure 26 Series V 

Series V contains two variations on the parent compound 91 (Figure 26). The first 

variation is the reduction of the 5,6-bond of 91. Structurally, 5,6-dihydro-pyrrolo[2,3-

d]pyrimidines 117 and 118 are akin to the cyclopenta[d]pyrimidine analogs, which are 

highly active colchicine-site binding agents.
54, 61

 Reduction of the 5,6-bond also allows 

less delocalization of the pyrrole N7-lone pair thus makes it somewhat more available for 

H-bonding acceptor and allows some flexibility in the 5,6-bond and 6,7-bond regions. 
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A               B 

117     

Figure 27 A) The lowest-energy conformation of 117; B) plot of energy vs. dihedral 

angle between the pyrimidine and aniline in 117. Energy in kcal/mol; 

green line in the plot indicates the current dihedral angle. Plot generated 

with MOE 2011.10; figure generated with Pymol 1.5. 

In addition, the lowest-energy conformation is even more dominant in 117 compared 

with 91, as no other competing energy minimum exists (Figure 27). An increase in the 

activity of 117 would support the modeling hypothesis that the lowest-energy 

conformation as in 91 is indeed the conformation at the colchicine-binding site. 

The second variation in Series V is the isosteric replacement of the important N4 with 

a carbon in 119 (Figure 26). If the H-bond acceptor attributes of the N4 in 91 are critical 

to activity, 119 is expected to be inactive. In addition, the conformational energy profile 

of 119 (plot not shown) is similar to 90, which is unable to maintain the productive 

binding conformation. 

 

  X Y Z   

 

 

 120 N C C    

 121 C N C    

 122 N C N    

 123 C C C   124 

 

Figure 28 Series VI 

N

N
N

N

O
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Series VI aims to determine the contributions of the nitrogen atoms on the pyrimidine 

and pyrrole rings of 91 to biological activity (Figure 28). Five structurally related 

nitrogen-containing heterocyclic scaffolds are used to replace the pyrrolo[2,3-

d]pyrimidine ring in 120 – 124. 
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2) HSP90 inhibitors 

2.1) Reported HSP90 inhibitors based on 8-arylsulfanyl-adenine 

Table 2  HSP90 inhibitors based on 8-arylsulfanyl-adenine with alkyne chain
152

 

 
 R1 X Ar EC50 Hsp90α (μM) IC50 HER2 (μM) IC50 SKBr3 (μM) 

125 H S 2-Br-4,5-(OCH2O)-Ph 0.03 ± 0.005 0.3 ± 0.05 0.2 ± 0.01 

126 H S 2-Cl-3,4,5-(OCH3)3-Ph 0.18 ± 0.05 9.1 ± 2.6 9.4 ± 0.9 

127 F S 2-Cl-3,4,5-(OCH3)3-Ph 0.12 ± 0.03 1.3 ± 0.4 1.8 ± 0.2 

PU24FCl F CH2 2-Cl-3,4,5-(OCH3)3-Ph 0.17 ± 0.09 1.5 ± 0.5 1.8 ± 0.4 

 

Table 3  HSP90 inhibitors based on 8-arylsulfanyl-adenine with amine chain
153

 

 

 R1 X R2 
EC50 Hsp90α 

(μM) 
IC50 HER2 

(μM) 
IC50 SKBr3 

(μM) 

PU-H71 H S I 0.0161 ± 0.001 0.05 ± 0.006 0.05 ± 0.005 

PU-H64 H S Br 0.0388 ± 0.003 0.205 ± 0.015 
0.142 ± 
0.022 

128 F CH2 I 0.0504 ± 0.004 0.08 ± 0.01 
0.045 ± 
0.006 

 

Our initial interest in developing pyrrolo[2,3-d]pyrimidine-based HSP90 inhibitors 

was inspired in part by a series of 8-arylsulfanyl-adenine derivatives reported in 2005 

(Table 2).
152

 These compounds showed moderate to good activities in both HSP90 

inhibition assay and cell-based assay. Reports on a series of compounds with improved 

potency and water solubility followed shortly (Table 3).
153

 Among them, PU-H71 has 

progressed to Phase I clinical trial as an intravenous drug for both metastatic solid tumors 

and lymphoma (ClinicalTrials.gov Identifier: NCT01393509 and NCT01581541). 

N

N N

N

NH2

X

R2

Ar

R1
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A 

 

B 

 

Figure 29 A) Crystal structure of PU-H71 (PDB: 2FWZ) at the ATP site of HSP90; 

B) Interaction plot of PU-H71 based on the crystal structure. Figure 

generated with Pymol 1.5; plot generated with MOE 2011.10. 

The compounds in Table 2 and 3 all bind to the ATP site on the N-domain of 

HSP90.
152, 153

 The ATP site is highly hydrated and the binding of PU-H71 was facilitated 

by a complex network of water molecules (Figure 29). In addition to interactions present 

in ATP binding, PU-H71 established additional bindings with the pocket through the 

benzodioxole ring. These added interactions have proved to be critical for the 
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activities.
152-154

 A comparison of the crystal structures of HSP90 with PU24FCl (PDB: 

1UYF), PU-H64 (PDB: 2FWY) and PU-H71 (PDB: 2FWZ) indicated that these analogs 

shared a common binding mode.
154

  

Similar to purine in structure, pyrrolo[2,3-d]pyrimidines have been successfully 

designed by Gangjee et al.
155-163

 as receptor tyrosine kinase (RTK) inhibitors. It was 

reasoned that the pyrrolo[2,3-d]pyrimidine scaffolds could bind to the ATP-site in 

productive conformations and achieve certain degrees of selectivity with appropriate 

substitutions. For HSP90 inhibitors, the pyrrolo[2,3-d]pyrimidine scaffold provided 

functionalization opportunities at the 5-position, which was not possible with the 

aromatic N7 in 8-arylsulfanyl-adenine compounds. 
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2.2) Designed pyrrolo[2,3-d]pyrimidine analogs 

 

  R1 R2   

 135 

 130 H 2-OCH3   

 131 H 3-OCH3   

 132 NH2 4-OCH3   

 133 NH2 3,4-diOCH3   

 134 NH2 3,4,5-triOCH3   

 

Figure 30 Series VII 

Several pyrrolo[2,3-d]pyrimidine analogs based on the 8-arylsulfanyl-adenines were 

designed and synthesized in an effort to explore the SAR. Variations were attempted at 

the various positions of the pyrrolo[2,3-d]pyrimidine and the phenyl ring. Compounds 

included in the present work are listed in Figure 30. Among them, the 2-amino analogs 

were designed to establish additional hydrogen bonds with the help of a near-by water 

molecule present in the crystal structure and the 5-methyl was intended to displace the 

non-structural water molecule
154

 for potential energy gains (Figure 29). 
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2.3) Reported HSP90 inhibitors based on 2-amino-6-halopurine 

Table 4  BIIB021 and its activities (μM) 

 

 R 
IC50 

HER2  
IC50 rHSP90 

binding 
IC50 

MCF7 
Tumor growth 

inhibition 

17-AAG * 0.007 0.7 0.01 70% @ 90 mg/kg 

PU24FCl ** 1.7 6.0 1.2  

129 H 0.02 0.9 0.5 83% @ 60 mg/kg 

BIIB021 OCH3 0.03 0.9 0.15 87% @ 125 mg/kg 

 *structure in Table 1, Part I; ** structure in Table 2 

 

The report of PU-H71 and PU24FCl led an industrial group to the discovery of the 2-

amino-6-halopurine-based HSP90 inhibitors (Table 4).
101

 This series has shown 

improved activities over the prior 8-arylsulfanyl-adenines. One of the most active 

compounds, BIIB021, has completed Phase II clinical trials as an orally active drug 

(ClinicalTrials.gov Identifier: NCT01004081 and NCT00618319).  

A 
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B 

 

Figure 31 A) Superimposition view of BIIB021 (green) and PU24FCl (orange) in 

crystal structure; B) Interaction plot of BIIB021 based on the crystal 

structure (PDB: 3QDD). Figure generated with Pymol 1.5; plot 

generated with MOE 2011.10. 

 

Despite different substitution patterns, the binding poses of BIIB021 (PDB: 3QDD
92

) 

and PU24FCl (PDB: 1UYF
164

) overlapped well when the two crystal structures were 

superimposed (Figure 31, A). Common interactions with the binding pocket were found 

in both inhibitors (Figure 31, B). Two hydrogen bonds were shared, including one 

between Asp93 and amino on both purines, four hydrogen bonds between the pocket and 

four nitrogen atoms of the purine mediated by structural water molecules. The π-π 

interactions between Phe138 and aromatic substitutions (phenyl in PU24FCl and 

pyridine in BIIB021) were also observed in both inhibitors. 
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2.4) Designed pyrrolo[2,3-d]pyrimidine analogs 

 

  Ar   Ar 

 136 

 

 137 

 

 138 

 

 139 

 

 140 

 

 141 

 

 

Figure 32 Series VIII 

Similar to Series VII, Series VIII intends to explore the possibility of increasing the 

activities through the replacement of the purine scaffold with pyrrolo[2,3-d]pyrimidine 

(Figure 32). In addition to variations on the N7 substitution, the 6-methyl was designed 

for hydrophobic interaction with Leu107. In the crystal structure (PDB: 3QDD), a water 

molecule was found near-by (Figure 31). However, this water molecule was believed to 

be a non-structural water molecule, since it was not consistently seen in other crystal 

structures of HSP90.  

 

  Ar   Ar   Ar 

 144 

 

 145 

 

 

146 

 

 147 

 

 148 

 

 

149 

 

 

Figure 33 Series IX 
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The chlorine of BIIB021 was surrounded by a group of water molecules in the crystal 

structure (Figure 31, B). It was reasoned that replacing this chlorine with an amino 

should be conducive to activity. Series IX serves this purpose by substituting the 4-

chloro on the pyrrolo[2,3-d]pyrimidine in Series VIII with an amino moiety (Figure 33). 
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IV. CHEMICAL DISCUSSION 

1) Synthesis of N-(4-methoxyphenyl)-2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-

amines (90 – 98) 

Scheme 17  Synthesis of the 2-methyl-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one (15) 

 

 

Direct cyclization to afford 2-methyl-pyrrolo[2,3-d]pyrimidine 15 (Scheme 17) by 6-

amino-2-methylpyrimidin-4(3H)-one (151) and chloroacetaldehyde (152) was 

unsuccessful. A reported three-step process through the pyrimidine intermediate 14 

afforded the desired scaffold 15,
124

 which was confirmed by 
1
HNMR. The isolated yield 

over three steps was over 30%. 
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Scheme 18  Proposed mechanism for cyclization leading to 15 

 

To help understand the two-step formation of the pyrrolo[2,3-d]pyrimidine 15 from 12 

(Scheme 18), a stepwise mechanism is proposed.  

Scheme 19  Synthesis of target compounds 90 – 98 

 

 R1 R2   R1 R2 

90 CH3 4-OCH3  95 H 2-OCH3 

91 H 4-OCH3  96 CH3 4-CH3 

92 CH3 3-OCH3  97 CH3 4-Cl 

93 H 3-OCH3  98 CH3 3,4-diCl 

94 CH3 2-OCH3     
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The target compounds 90 – 98 were synthesized from the 2-methyl-pyrrolo[2,3-

d]pyrimidine 15 in two steps (Scheme 19). Chlorination of 15 with phosphorus 

oxychloride gave the 4-chloro-pyrrolo[2,3-d]pyrimidine 153 in 81% yield. The following 

SNAr displacements of 4-chloro with various anilines (154) afforded 90 – 98 (55 – 80% 

isolated). Catalytic amount of acid promoted the reaction. Anhydrous conditions were 

required to suppress hydrolysis of the 4-chloro in 153 to the 4-oxo 15. 

Both reflux in an oil bath and microwave irradiation (130 °C) were tried for the SNAr 

displacement step. However, the outcomes of the reactions were close though the 

microwave reaction also requires a sealed vessel, which is advantageous in retaining the 

HCl gas. In terms of yield, the properties of the substrates had a greater impact, as N-

methyl-anilines gave higher yields than anilines and anilines with electron-donating 

groups gave higher yields than those with electron-withdrawing groups. Complete 

disappearance of starting material was normally observed and the isolated yields ranged 

from 50% to 80%. 

 

2) Synthesis of 4-(methyl(2-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)phenol 

(99) 

Scheme 20  Synthesis of target compound 99 
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Table 5  Conditions attempted for de-methylation of the phenyl ether 

Reagents Conditions Result 

CF3SO3H 120 
o
C, 6 h Sole product 99 formed, less than 50% isolated 

(CH3)3SiI, 
CHCl3 

Microwave 120 °C, 6 h Most of 90 recovered, minor new product identified  

BBr3, CH2Cl2 0 
o
C to r.t.  4 h Sole product 99 isolated 

 

Instead of the same SNAr displacement with the O-protected-N-methyl-aniline, a direct 

demethylation of 91 was carried out for the synthesis of 99 (Scheme 21). Three common 

reagents were tried (Table 5). Treatment with a strong Bronsted acid (CF3SO3H) 

generated the sole product 99. However, the isolated yield was low, possibly due to the 

degradation under strong acidic condition. Milder conditions using iodotrimethylsilane 

did not effect any conversion up to 6 hours. Only the strong Lewis acid BBr3 (3 eq.) was 

able to cleave the methylether on the electron-rich phenyl ring and gave the phenol (99) 

in satisfactory yield (82%). 

 

3) Synthesis of 2-methyl-N-(naphthalen-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amines 

(110 – 111) 

Scheme 21  Synthesis of N-methylnaphthalen-2-amine (159) 
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Direct methylation of 2-amino-naphthalene 155 (Scheme 21) with iodomethane or 

dimethylsulfate, afforded mainly the N,N-dimethylated product. Reductive amination 

with formaldehyde was also expected to give the dimethylated amine. Using formic acid 

to generate the formamide with the amine under heating condition involves high 

hazardous risk. Using triethyl orthoformate as the surrogate of formaldehyde was 

supposed to produce the ethoxyimine 156,
165

 which could be reduced to monomethylated 

naphthalenamine 159. However, treatment of the naphthalen-2-amine 155 with triethyl 

orthoformate and catalytic amount of strong acid afforded only the N-ethyl-formamide 

157, which was identified by 
1
HNMR. Similar reaction was reported in literature,

166
 

while the mechanism was unclear. In the absence of acid, reaction between triethyl 

orthoformate and naphthalen-2-amine 155 in water under microwave irradiation
166

 gave 

formamide 158 (74% isolated) as the sole product. Reduction of 158 by lithium 

aluminum hydride in short time afforded the monomethylated naphthalene-2-amine 159 

(70%). 

Scheme 22  Synthesis of target compounds 100 and 101 

 

The SNAr displacement of 153 with the naphthalen-2-amines 155 and 159 (Scheme 22) 

was performed in 1,4-dioxane at higher temperature in the microwave reactor (140 °C). 
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The yields were slightly lower than when carried out under reflux in isopropanol as for 

90 – 98. 

 

4) Synthesis of N
4
-(4-methoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines 

(102 – 103) 

Scheme 23  Synthesis of target compounds 102 and 103 

 

In contrast to 2-methyl-pyrrolo[2,3-d]pyrimidine 15, the 2-amino-pyrrolo[2,3-

d]pyrimidine 161 (Scheme 23) could be synthesized in a single step by cyclization of 2-

amino-pyrimidine 1 with chloroacetaldehyde 161. Variations of the reaction conditions 

were reported.
113-115

 The differences were mainly in temperature and solvents. Among the 

reactions attempted, the condition with DMF/H2O 6:1 and room temperature 24 hours 
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gave the most reproducible result. The typical crude yield for 161 was about 70 to 80%. 

Other conditions included reflux in H2O for five hours, under which the excess sodium 

acetate seemed to be detrimental to the yield. 

A direct chlorination of 161 with phosphorus oxychloride was possible but suffered 

from low isolated yields (~30%). Further, the 2-amino-4-chloro-pyrrolo[2,3-d]pyrimidine 

formed was a poor reactant in the next SNAr reaction with anilines. These problems were 

solved by adding the pivaloyl group to the 2-amino, which increased the solubility in 

organic solvents and decreased the electron density of the pyrimidine ring. The protected 

162 was efficiently converted to the 4-chloro intermediate 163 and the following SNAr 

reaction were performed under the same condition for 2-methyl-pyrrolo[2,3-

d]pyrimidines. The removal of the pivaloyl group could be achieved in either basic 

(NaOH in methanol and water) or acidic (HCl in acetic acid) conditions. 

Scheme 24  One-pot synthesis of 165 via 4-bromo-pyrrolo[2,3-d]pyrimidine 

 

The synthesis of the more reactive 4-bromo-pyrrolo[2,3-d]pyrimidine 167 (Scheme 24) 

was also attempted. The obvious use of phosphorus oxybromide (POBr3) was abandoned 
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due to the high chemical hazard involved. Alternatively, a combination of phosphorus 

pentoxide (dehydration reagent) and tetra-n-butylammonium bromide (anion source) in 

toluene at reflux was able to convert the 4-oxo-pyrrolo[2,3-d]pyrimidine 162 to the 

purported 4-bromo 167. TLC monitoring indicated a roughly 60% yield in four hours. 

However, 167 was unstable and was completely hydrolyzed back to the starting 162 in 

the following aqueous workup. 

To utilized the high reactivity of 167, a one-pot procedure toward the 4-anilino-

pyrrolo[2,3-d]pyrimidine 165 was next attempted (Scheme 24). In this case, a microwave 

reactor was used to ensure a strict anhydrous environment and high temperature. The 

target compound 165 was formed with an isolated yield around 40%. 

 

5) Synthesis of N
4
,6-dimethyl-N

4
-phenyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines 

(104 – 109) 

Scheme 25  Synthesis of target compounds 104 – 109 
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 R      R 

174 4-OCH3     104 4-OCH3 

175 3-OCH3     105 3-OCH3 

176 2-OCH3     106 2-OCH3 

177 4-CH3     107 4-CH3 

178 4-Cl     108 4-Cl 

179 3,4-diCl     109 3,4-diCl 

 

The same sequence for the synthesis of 102 and 103 was applied to the 5-methyl 

analogs 104 – 109 without major modification (Scheme 25). The isolated yields of the 

last two steps (172 to 104 – 109) ranged from 40% to 65%. 

 

6) Synthesis of 6-methoxy-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1,2,3,4-tetrahydro-

quinolines (110 – 113) 

Scheme 26  Synthesis of target compounds 110 – 113 

 

 R1 R2             R1 R2 

153 CH3 H            110 CH3 H 

163 PivNH H            111 NH2 H 

172 PivNH CH3            112 NH2 CH3 

180 H H            113 H H 

 

 

Table 6  Experimented conditions for the reaction of 153 and 181 
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Solvent Heat source T 
o
C Acid Result 

isopropanol oil bath reflux HCl (anhydrous) Trace amount of product 

isopropanol Microwave 140 
o
C HCl (anhydrous) ~ 20% 

1,4-dioxane Microwave 140 
o
C HCl (anhydrous) ~ 20% 

1,4-dioxane Microwave 180 
o
C HCl (anhydrous) 65% isolated 

1,4-dioxane Microwave 180 
o
C CF3COOH ~ 50% 

1,4-dioxane Microwave 180 
o
C ZnCl2 ~ 20% 

DMF Microwave 180 
o
C HCl (anhydrous) 50% isolated 

 

The SNAr reactions of the 4-chloro-pyrrolo[2,3-d]pyrimidines were much more 

difficult and low-yielding when 6-methoxy-tetrahydroquinoline 181 (Scheme 26) was 

used as the nucleophile. A reproducible condition with isolated yield over 60% was 

established only after multiple trials. The factors including solvent, temperature and acid 

were investigated in the reaction of 2-methyl-4-chloro-pyrrolopyrimidine 153 and 6-

methoxy-tetrahydroquinoline 181 (Table 6). Reaction times were fixed as six hours. The 

estimated yields were based on the observations of TLC. 

Temperature was found to be the most important factor in this reaction (Table 6). The 

substitution of isopropanol with 1,4-dioxane was mainly for the control of the vapor 

pressure inside the microwave vial. DMF could achieve a similar yield (50% isolated), 

but 1,4-dioxane offered a more convenient workup. Interestingly, catalytic amounts of 

Lewis acid could also provide the same conversion, though the yield (~20%) with zinc 

chloride was low in this case. The methylphenyl ether remained intact in the presence of 

zinc chloride. 
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7) Synthesis of 7-substituted N-(4-methoxyphenyl)-N-methyl-7H-pyrrolo[2,3-

d]pyrimi-din-4-amines (114 – 116) 

Scheme 27  Synthesis of target compounds 114 – 116 

 

                  R   R   R 

                 114 CH3  115 benzyl  116 tosyl 

 

Sodium hydride is frequently used in electrophilic substitution at the N7 of the 

pyrrolo[2,3-d]pyrimidines. However, under such condition, excess quantities of highly 

toxic iodomethane were usually required for high yield. The polarity of the N-methyl 

analog 114 (Scheme 27) is close to its N-H precursor 91, which makes the removal of the 

unreacted material very difficult. After multiple experiments, the combination of cesium 

carbonate and DMF in a sealed vial for four hours at 120 °C was found to be the optimal 

condition for both methylation and benzylation. It is noteworthy that the proper amount 

of DMF is critical for the outcome of the reaction. Excess solvent (over 10 times the 

weight of reactant) severely decreased the yield (lower than 20%) or gave no reaction at 

all. 

The tosylation of N7 on the pyrrolo[2,3-d]pyrimidine was performed with sodium 

hydroxide as the base (Scheme 27). The room temperature reaction in methylene chloride 
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in the presence of the phase-transfer catalyst n-tetrabutylammonium hemisulfate afforded 

the N-tosyl analog 116 in better than 80% yield. 

 

8) Synthesis of N
4
-(4-methoxyphenyl)-N

4
-methyl-6,7-dihydro-5H-pyrrolo[2,3-

d]pyrimidine-2,4-diamine (118) 

Scheme 28  The strategy toward the target compound 118 

 

The relatively quick access of the functionalized pyrrolo[2,3-d]pyrimidine 183 made 

direct reduction of the pyrrole ring a viable strategy for the synthesis of 5,6-

dihydropyrrolo[2,3-d]pyrimidine 182 (Scheme 28). Successful application of this 

strategy has been reported for the synthesis of 6-substituted 5,6-dihydropyrrolo[2,3-

d]pyrimidines.
133

 

Scheme 29  Hydrogenation without N-7 electron-withdrawing group 
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The direct palladium-catalyzed hydrogenation of the 5,6-bond on furo[2,3-

d]pyrimidines was known (Gangjee et al. unpublished data). Although never reported, a 

direct hydrogenation of the pyrrolo[2,3-d]pyrimidines was attempted (Scheme 29). Both 

structures (R = OH or 4-methoxyl-N-methylaniline) experimented remained intact after 

over night hydrogenation (55 psi) without any reduction. 

Scheme 30  Hydrogenation in the presence of the 4-methoxy-N-methylaniline  

 

 

Table 7  Experimented hydrogenation conditions 

Catalyst Conditions Result 

Pd(OH)2 15 – 55 psi, up to 12 h No reaction 

Pd/C 55 psi, up to 12 h No reaction 

PtO2 55 psi, up to 12 h No reaction 

Wilkinson’s catalyst 15 – 55 psi, up to 12 h No reaction 

 

One of the shortest routes toward the target compound would be the hydrogenation on 

the N-tosyl analog of 165 (Scheme 30). The N-7 tosylation of pyrrolo[2,3-d]pyrimidines 

usually uses sodium hydride as the base.
133

 However, in the conversion from 165 to 186, 
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NaH/DMF combination did not afford a satisfactory yield (~50%). Instead, sodium 

hydroxide in tandem with a phase transfer catalyst (n-tetrabutylammonium hemisulfate) 

in dichloromethane gave a higher than 90% transformation and over 80% isolated yield. 

The hydrogenation of N7 tosylated 186 was unsuccessful despite elevated hydrogen 

pressure or prolonged reaction time (Table 7). Switching the palladium catalyst to 

platinum was also in vain. The resistance to hydrogenation shown by 186 was likely due 

the dominance of its lowest-energy conformation in solution (―186 conformation‖ in 

Scheme 30). A similar case was observed for 91 (discussed in Part III). In this 

conformation, the 4-methoxyphenyl effectively shielded the 5,6-double bond from the 

metal catalyst and rendered the reaction under room temperature impossible. 

Scheme 31  Synthesis of N-7-tosylated pyrrolo[2,3-d]pyrimidines 189 

 

The tosylation of 162 took place at both the 4-oxo/hydroxyl and the N-7 position 

(Scheme 31). The formation of both products started almost simultaneous (observed on 

TLC), which made the adjustments on the reactant equivalent or addition sequence 

useless in controlling the reaction outcome. At the end of the reaction, 188 was the 

predominant product with the ratio of approximately 3:1 (188:189). Fortunately, it could 

be conveniently converted to the desired product 189 under acidic conditions. It was 
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interesting to observe that the hydrolysis of O-tosyl proceeded more quickly in acidic 

conditions than in basic conditions (NaOH, CH3OH, reflux). 

Scheme 32  Reactions on N,O-distosyl-pyrrolo[2,3-d]pyrimidine 188 

 

The property of the O-tosyl as a leaving group prompted a SNAr displacement with 4-

methoxy-N-methylaniline 168 (Scheme 32). The reaction proceeded with relative low 

yield (~35%), comparing with higher than 70% isolated yield in reactions using the 4-

chloro compounds. In addition, short duration (less than two hours) hydrogenation 

converted 188 to 189 quantitatively without 5,6-bond reduction. 

Scheme 33  Synthesis of 5,6-dihydropyrrolo[2,3-d]pyrimidine 193 
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The hydrogenation of 189 to 190 used a modified literature procedure (Scheme 33).
133

 

The increase of hydrogen pressure from 15 to 50 psi and four-hour duration resulted in an 

almost quantitative conversion. The chlorination of the reduced 190 by phosphorus 

oxychloride gave the same high yield as for other pyrrolopyrimidines. However, the SNAr 

displacement of the reduced 191 was much more difficult than its aromatic counterpart. 

The harsher condition developed for the 6-methoxy-tetrahydroquinoline reactions were 

required to afford 192 in acceptable yield (60% isolated). Under this condition, the 

pivaloyl on the 2-amion was removed simultaneously. This observation highlights the 

influence of electron density on the reactivity of the aromatic rings in SNAr reactions. 

Scheme 34  Removal of the tosyl group from nitrogen 

 

Table 8  Experimented conditions for the removal of N-tosyl 

Reagent Condition Result 

H2SO4 (conc.) 90 
o
C, 1 h 

Complete degradation of 193, no product 
formed 

H2SO4 (70%) 90 
o
C, 4 h No product formed 

HBr / H2O Reflux, 2 h 
Complete degradation of 193, no product 

formed 

HBr (30%) / AcOH Reflux, 2 h 
Complete degradation of 193, no product 

formed 

HBr (30%) / AcOH r.t. 16 h Multiple spots on TLC 

HBr (30%) / AcOH, 
phenol 

r.t. 16 h No product formed 

NaOH (3 N) / 
CH3OH, H2O 

Reflux, 3 h Removal of pivaloyl only 

NaOC2H5 / C2H5OH Reflux, 3 h Removal of pivaloyl only 
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Na/NH3 (liquid) -78 to -30
 o
C, 3 h 

Small quantities of 198 formed, most 193 
recovered 

Mg (turnings) / 
CH3OH 

Sonication 30 min, 
then r.t. 3 h 

Complete reaction 

 

The most surprising moment during this project was when the removal of the tosyl 

group on the N-7 became a challenging task (Scheme 34). There is a report on removing 

the N-7 tosyl of the 4-oxo-5,6-dihydropyrrolo[2,3-d]pyrimidine 192.
133

 However, the two 

methods using concentrated sulfuric acid or sodium in liquid ammonia turned out to be 

ineffective in the reactions for 192 (Table 8). Harsh acidic conditions degraded the 

starting material into unidentifiable substances of black color. Basic conditions could 

only hydrolyze the pivaloyl group on the 2-amino within the given time. Reductive 

cleavage with sodium in liquid ammonia afforded small quantities of product. However, 

the complicated experiment setup made this method suboptimal in practice. Fortunately, 

the identification of magnesium turning in anhydrous methanol resulted in success (last 

entry in Table 8). The sonication as an activation mechanism for magnesium was 

necessary since the reaction rate under stirring was slow to the extent of being impractical. 

The isolated yield was over 90% with simple workup and purification procedures. 

Scheme 35  Alternative synthetic sequence for the target compound 118 

 



www.manaraa.com

78 
 

Alternatively, the removal of N7-tosyl could immediately follow the hydrogenation. 

This sequence was also attemped (Scheme 35). In sharp contrast with their N7-tosylated 

counterparts, both 194 and 195 displayed considerably lower reactivity under similar 

conditions. In the chlorination step, the reaction was not complete after three hours. In the 

subsequent SNAr displacement with aniline 168, the yield was lower than 30%. This 

provided another example of the close relationship between the electron density of the 

aromatic ring and its reactivity in SNAr reactions. 

Scheme 36  Attempted reduction of 102 by silane 

 

The pyrrole ring of indoles was reported to undergo reduction by triethylsilane under 

strong acidic conditions. However, this method was not applicable to the pyrrolo[2,3-

d]pyrimidines (Scheme 36). The sole product of this reaction was the de-methylated 

compound from the cleavage of the methoxy on phenyl. 

Scheme 37  Alternative strategy toward the 5,6-dihydropyrrolo[2,3-d]pyrimdine 

 

Inspired by the synthesis of the 2-methyl-pyrrolo[2,3-d]pyrimidines, the 2-amino 

analog of the acetal intermediate 196 (Scheme 37) was synthesized with the intention of 
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a reductive amination to afford the 5,6-dihydropyrrolo[2,3-d]pyrimidine 197 in a single 

step. The explored reaction conditions included NaBH4, NaBH(OAc)3/AcOH, 

NaBH4/AcOH (1:1). However, none of these experiments was successful. The main 

reason was attributed to the low nucleophilicity of the amino group on the pyrimidine. A 

combination of high temperature and strong electrophile is usually required to activate 

the amino group of this kind. In some experiments, it was suspected that the acetal was 

converted to aldehyde and reduced to alcohol. However, this observation was not 

confirmed since the products formed were not isolated. 

Scheme 38  Synthesis from functionalized pyrimidines 

 

Intermediates like pyrimidinylethanol 200 (Scheme 38) could be a favorable precursor 

for the synthesis of 5,6-dihydropyrrolo[2,3-d]pyrimidines. Similar reactions are reported 

in the literature.
132, 167

 However, the practical value of this route was limited by the side 

reactions and low isolated yields. The reduction of the acetate 199 with LiAlH4 generated 

highly polar compounds with unknown structures. Other reducing reagents were not 

experimented. The subsequent steps, including a Gabriel synthesis to convert the alcohol 

into an amine followed by an intramolecular SNAr displacement, was not attempted. 
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9) Synthesis of N-(4-methoxyphenyl)-N,2-dimethyl-6,7-dihydro-5H-pyrrolo[2,3-

d]pyrimidin-4-amine (117) 

Scheme 39  Direct hydrogenation with the 4-position substituted 

 

On the basis on the observations during the synthesis of 118 (Scheme 39), the 

precursor toward the 2-methyl analog 117 was obtained in a much short sequence. This 

was made possible by the differences in the low-energy conformation between the N-

methylaniline substituted 91 and aniline substituted 90. This difference does not only 

influence the biological activity, but also has enormous impact on the reactivity. Since 

the access of the palladium catalyst to the 5,6-double bond of 90 was not hindered by the 

phenyl ring, a direct hydrogenation of the N7-tosylated derivative 201 becomes possible. 

The duration of the hydrogenation was much longer than the 4-oxo analogs under the 

same hydrogen pressure and catalyst conditions. 

Scheme 40  Synthesis of the target compound 117 
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The methylation with iodomethane was carried out on the N7-tosylated 202 from the 

previous step (Scheme 40), followed by the removal of the tosyl group using the 

established procedure to afford the target compound 117. 

 

10) Synthesis of 4-(1-(4-methoxyphenyl)ethyl)-2-methyl-7H-pyrrolo[2,3-d]pyrimi-

dine (119) 

Scheme 41  Attempted synthesis of 1-(4-methoxyphenyl)ethyl Grignard reagent 

 

The initial plan for the synthesis of 119 was to utilize a ferric acetylacetonate 

[Fe(acac)2] catalyzed coupling between the 4-chloropyrrolo[2,3-d]pyrimidine 153 and the 

Grignard reagent 205 (Scheme 41). There was no report or commercial source of 205. 

This Grignard reagent is highly unstable and quickly rearranges into its 2-ethyl 

magnesium bromide analog. The attempt to generate 205 from 204 through the exchange 

reaction with another Grignard reagent was unsuccessful. 

Scheme 42  Alkylation of the pyrrolopyrimidine through a free radical reaction 
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There are literature reports on the intramolecular displacement of halogen on the 

substituted pyrimidine through free radical reactions.
168, 169

 However, such intermolecular 

reactions through free radical mechanisms are not common in the literature. The 

precursor xanthate derivative 208 (Scheme 42) was synthesized from the alcohol 206 via 

a Mitsunobu reaction. The subsequent free radical reaction of 208 and 4-

chloropyrrolo[2,3-d]pyrimdine 153 generated multiple products in similar quantities that 

were impractical to isolate and analyze individually. 

Scheme 43  SNAr displacement with a strong carbon nucleophile 

 

A direct SNAr displacement of the 4-chloro of the pyrrolo[2,3-d]pyrimidine with a 

strong carbon nucleophile was contemplated and optimized (Scheme 43). The protection 

of the N7 of 153 was necessary, as no product was detected even under two equivalents 

of the base without the N7 protection. In the SNAr reaction step (210 to 212), sodium 

hydride was found to give the best results (62% isolated). The main side product in this 

reaction was the carboxylic acid resulting from the hydrolysis of the nitrile. Using 

stronger bases like NaHMDS led to the formation of an unknown product. 

Besides the acetonitrile 211, methyl 2-(4-methoxyphenyl)acetate has also been 

attempted as the nucleophile in the SNAr displacement. However, the outcome of the 
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acetate reactions was less favorable as multiple products were formed. The side reactions 

were possibly due the hydrolysis of the acetate. 

Scheme 44  Choice of protecting groups at the N7 position 

 

Before the final selection of anisyldiphenylmethyl, the Boc and tosyl have been tried 

as the protecting group for the N-7 of pyrrolo[2,3-d]pyrimidine 153 (Scheme 44). Both 

of these protecting groups are stable under basic conditions for the protection of amines. 

However, instant cleavage of the Boc or tosyl from pyrrolo[2,3-d]pyrimidine was 

observed upon the exposure to NaH or NaHMDS. A change in the addition sequence of 

the reagents did not alter the outcome. 

Scheme 45  Conversion of the nitrile to a methyl 

 

The reduction of nitriles to aldehydes was realized with diisobutylaluminum hydride 

(DIBAL-H) as expected (Scheme 45). The aldehyde 217 was unstable under room 

temperature and was immediately used for the next step. The following Wolff-Kishner-
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Huang reaction accomplished both the reduction of aldehyde and the cleavage of 

anisyldiphenylmethyl in a single step. Trityl and anisyldiphenylmethyl are usually 

cleaved under strong acidic conditions. Hydrazine-promoted cleavage was uncommon 

and may be advantageous for acid-labile structures. 

 

11) Synthesis of N-methyl-4-methoxyaniline-substituted bicyclic heterocycles (120 – 

122 and 124) 

Scheme 46  Synthesis of target compounds 120 – 122 and 124 

 

 

The synthesis of the target compounds 120 – 122 and 124 followed the same 

procedure established for the synthesis of tetrahydroquinoline-substituted analogs 

(Scheme 46). In general, to achieve reasonable yields on these reactions elevated 

temperature and strictly anhydrous condition are required. Even if these requirements 

were satisfied, complete conversion within the attempted time was rare. The isolated 



www.manaraa.com

85 
 

yield in these reaction ranged from 40% to 63%. The physical states of the products were 

different. For example, 122 and 124 remained semi-solid despite multiple rounds of 

recrystallization. Formation of the hydrochloride salts did not promote the formation of a 

solid. 

 

12) Synthesis of N-(4-methoxyphenyl)-N-methyl-1H-indol-4-amine (123) 

Scheme 47  Synthesis of the target compound 123 via Buchwald-Hartwig reaction 

 

A Buchwald-Hartwig amination was the obvious choice for the synthesis of indole-

based 123 (Scheme 47). The removal of the NH hydrogen on the 4-bromo-indole 222 

was necessary as shown by experiment. Boc group was selected in this structure for its 

expedient formation and removal. Anticipating the strong basic condition of the coupling 

reaction, the more base-resistant anisyldiphenylmethyl was also employed. Another 

benefit of anisyldiphenylmethyl is the solid form of its protected product 224 while the 
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Boc-protected 223 was a oil-like liquid. Both formation and removal of these two 

protecting group proceeded with high yields (> 90%). 

Palladium acetate and Xphos, a typical catalyst-ligand pair for Buchwald-Hartwig 

coupling, turned out to be the most efficient combination for the synthesis of 225 and 226 

after a short screening. Other attempted combinations included Pd3(dba)2/tBu-Dave-phos, 

Pd(OAc)2/tBu-Dave-phos, Pd(OAc)2/BINAP. The Pd3(dba)2/tBu-Dave-phos pair gave 

very low yield (~10%) in this case, while the other two did not afford the product under 

the same condition. 

 

13) Synthesis of 5-methyl-7-(pent-4-yn-1-yl)-6-(phenylthio)-7H-pyrrolo[2,3-

d]pyrimidin-4-amines (130 – 134) and 6-(benzo[d][1,3]dioxol-5-ylthio)-7-(3-

(isopropylamino)propyl)-5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (135) 

Scheme 48  Synthesis of 5-methyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (38) 

 

The synthesis of the 2-amino-5-methyl-pyrrolo[2,3-d]pyrimidine 38 (Scheme 48) 

followed a literature reported method.
129

 The 2-amino-3-cyano-furan 36 was unstable and 

was used immediately without isolation. Under basic conditions, the furan ring of 35 

opened and rearranged into the product 38 upon the attack of guanidine. The reaction was 
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slow and strict anhydrous condition was required to attain a reasonable isolated yield (31% 

over two steps). 

 

Scheme 49  Synthesis of 5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (43) 

 

The synthesis of 4-amino-5-methyl-pyrrolo[2,3-d]pyrimidine 43 (Scheme 49) also 

followed a literature reported method.
130

 A modified Knorr pyrrole synthesis afforded the 

2-amino-3-cyano-4-methyl-pyrrole 40 in a crude yield around 60%. Reflux of 40 in 

triethyl orthoformate gave the ethoxyimine 41 followed by amination with the 

commercially available 7N ammonia in methanol in a sealed vial under room temperature 

for 12 hours to afford 42 (crude yield ~30% over two steps). The redundant sequence was 

deemed necessary when a direct cyclization between 40 and formimidamide failed to 

produce 43. Finally, the intramolecular cyclization of 42 under basic conditions afforded 

the pyrrolo[2,3-d]pyrimidine 43 in 70% yield. 
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Scheme 50  Synthesis of target compounds 130 – 135 

 

 

 R1 R2 

130 H 2-OCH3 

131 H 3-OCH3 

132 NH2 4-OCH3 

133 NH2 3,4-diOCH3 

134 NH2 3,4,5-triOCH3 

 

The substitutions of selected thiophenols to the 6-positon of pyrrolo[2,3-d]pyrimidines 

226 – 231 followed a reported procedure (Scheme 50).
170

 The iodine in these reactions 

was added in portions to ensure the maximal catalytic performance. The yields for the 

substitution reaction ranged from 30% to 45%. The secondary amine 233 was converted 

from bromopropanol 235 in three steps. In the N7 alkylation step, higher concentrations 

of reactants were found to be critical to achieve the high yields (~ 90%). Excess solvent, 
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for example over ten times the weight of 226 – 231, severely decreased the yield (~ 20%) 

or resulted in no product at all. 

 

14) Synthesis of 7-substituted-4-chloro-6-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-

amine (136 – 143) 

Scheme 51  Synthesis of target compounds 136 – 141 

 

 R    R    R 

136 

 

 

 

137 

 

  

138 

 

139 

 

 

 

140 

 

  

141 

 

 

The synthesis of target compounds 136 – 141 (Scheme 51) followed the same 

procedure for the synthesis of N7-benzyl analogs 115. Similar yields (71% to 85%) were 

also obtained for this series of compounds. 
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16) Synthesis of 7-substituted-4-amino-6-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-

amine (149 – 154) 

Scheme 52  Synthesis of target compounds 144 – 149 

 

 R    R    R 

144 

 

 

 

145 

 

  

146 

 

147 

 

 

 

148 

 

  

149 

 

 

The target compounds 144 – 149 (Scheme 52) were synthesized from their 

corresponding 4-chloro analogs in a single amination step using the commercially 

available 7N ammonia in methanol. The yields of this amination step ranged from 54% to 

89%.  
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V. EXPERIMENTAL 

Microwave reactions were performed on the Biotage® Initiator EXP US microwave 

reactor. A model ROBOT EIGHT 355380 30522-17A robot was used in combination. 

Analytical samples were dried in vacuo in a CHEM-DRY drying apparatus over P2O5 at 

50 °C. Melting points were determined on either on a MEL-TEMP II melting point 

apparatus with FLUKE 51 K/J electronic thermometer or a MPA100 OptiMelt 

Automated Melting Point System. Nuclear magnetic resonance spectra for proton (
1
H 

NMR) were recorded on the Bruker WH-300 (300 MHz), Bruker Avance II 400 (400 

MHz) or Bruker Avance II 500 (500 MHz) NMR systems with TopSpin processing 

software. The chemical shift values are expressed in ppm (parts per million) relative to 

the tetramethylsilane as an internal standard: s, singlet; d, doublet; dd, doublet of doublet; 

t, triplet; q, quartet; m, multiplet; br, broad singlet. Thin-layer chromatography (TLC) 

was performed on Whatman® PE SIL G/UV254 flexible silica gel plates with fluorescent 

indicator. The spots were visualized under 254 and 365 nm illumination. Proportions of 

solvents used for TLC are by volume. Column chromatography was performed on the 

silica gel (70 to 230 meshes, Fisher Scientific) column. Flash chromatography was 

carried out on the CombiFlash® Rf systems, model COMBIFLASH RF. Pre-packed 

RediSep® Rf normal-phase flash columns (230 to 400 meshes) of various sizes were 

used. Elemental analyses were performed by Atlantic Microlab, Inc., Norcross, GA. 

Element compositions are within ±0.4% of the calculated values. Fractional moles of 

water or organic solvents frequently found in some analytical samples could not be 

prevented despite 24 to 48 hours of drying in vacuo and were confirmed where possible 

by their presence in the 
1
H NMR spectra. Mass spectrum data was acquired on the 
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Agilent G6220AA TOF LC/MS system using the nano ESI (Agilent chip tube system 

with infusion chip). Solvents and chemicals were purchased from Sigma-Aldrich Co. or 

Thermo Fisher Scientific Inc. and were used as received. 

 

2-Methyl-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one (15) 

To solution of ethyl-2-cyanoacetate 10 (1.13 g, 10 mmol) in anhydrous DMF (20 mL) 

was added the sodium methoxide (0.54 g, 10 mmol). After stirring for 30 min, the 

precipitated salt was filtered off and to the clear solution 2-bromo-1,1-diethoxyethane 11 

(1.97 g, 10 mmol)  was added. The reaction was heated at 90 
o
C for 4 hours. After cooled 

to room temperature, the reaction solution was extracted with diethyl ether (2 × 20 mL). 

The ether layer was collected, dried over sodium sulfate and evaporated to give a pale 

yellow liquid. The liquid was then added to a solution of acetamidine hydrochloride 13 

(0.94 g, 10 mmol) and sodium ethoxide (0.68 g, 10 mmol) in ethanol (20 mL), followed 

by reflux for 3 hours. By the end of the reflux, the reaction solution was evaporated to 

dryness, extracted by ethyl acetate and water. The organic layer was collected and 

evaporated to afford a solid. Then the solid was added concentrated sulfuric acid (2 mL) 

in ethanol (10 mL) and reflux for 2 hours. Water (10 mL) was added at the end of the 

reaction followed by ammonia hydroxide to adjust the pH to 8. The precipitate formed 

was collected and dried to give 15 as an off-white powder (850 mg) and used without 

further purification. An analytical sample was purified and analyzed by 
1
HNMR (500 

MHz, DMSO-d6): δ 2.30 (s, 3 H, 2-CH3), 6.37 (d, 1 H, 5-H, J = 1.15), 6.94 (d, 1 H, 6-H, 

J = 0.6), 11.61 – 11.67 (d, 1 H, N7-H, J = 26.35, D2O exchanged). 
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4-Chloro-2-methyl-7H-pyrrolo[2,3-d]pyrimidine (153) 

To the POCl3 (10 mL) in a round-bottom flask was added 15 (745 mg, 5 mmol) and 

the mixture was refluxed for 3 hours. After the removal of remaining POCl3 under 

vacuum, saturated solution of sodium bicarbonate (10 mL) was carefully added. The 

mixture was extraction with ethyl acetate (2 × 20 mL). After evaporation, 153 was 

obtained as a pale yellow powder (668 mg, 81%) and used without further purification. Rf 

0.45 (CH3OH/CHCl3, 1:10). An analytical sample was purified and analyzed by 
1
HNMR 

(DMSO-d6): δ 2.28 (s, 3 H, 2-CH3), 6.35 (d, 1 H, 5-H, J = 3.28), 6.93 (d, 1 H, 6-H, J = 

3.28), 11.67 (s, 1 H, N7-H, D2O exchanged).  

 

General procedures for the synthesis of 90 – 98 

To the solution of compound 153 (334 mg, 2 mmol) in isopropanol (5 mL) was added 

the corresponding aniline 154 (2.2 mmol). Anhydrous HCl gas was bubbled through the 

mixture under stirring until the solution became clear. The solution was then either 

refluxed in oil bath or heated in microwave reactor (130 
o
C) for 4 hours. At the end of the 

reaction, the reaction mixture was evaporated to dryness, added saturated sodium 

bicarbonate (10 mL) and extracted with ethyl acetate (2 × 20 mL). Silica gel was added to 

the organic layer followed by column chromatography or flash chromatography. 

 

N-(4-methoxyphenyl)-2-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (90) 
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After column chromatography (1 – 3% methanol in chloroform), 90 was obtained as 

white solid (305 mg, 60%). 
1
HNMR (400 MHz, DMSO-d6): δ 2.42 (s, 3 H, 2-CH3), 3.73 

(s, 3 H, OCH3), 6.55 (d, 1 H, 5-H, J = 3.24), 6.91 (d, 2 H, phenyl, J = 8.96), 7.05 (d, 1 H, 

6-H, J = 3.44), 7.74 (d, 2 H, phenyl, J = 8.92), 9.02 (s, 1H, N-H), 11.41 (s, 1 H, N7-H, 

D2O exchanged). Rf 0.42 (CH3OH/CHCl3, 1:5); m.p. 258.7 – 259.9 ˚C. HRMS m/z 

calculated for C14H15N4O [M+H]
+
, 255.1240; found, 255.1234. Elemental analysis 

calculated for C14H14N4O: C, 66.13; H, 5.55; N, 22.03. Found: C, 66.09; H, 5.68; N, 

21.86. 

 

N-(4-methoxyphenyl)-N,2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (91) 

After column chromatography (1 – 2% methanol in chloroform), 91 was obtained as a 

white solid (425 mg, 80%). Rf 0.65 (CH3OH/CHCl3, 1:5); m.p. 229.3 – 229.5 °C. 
1
H 

NMR (400 MHz, DMSO-d6): δ 2.45 (s, 3 H, 2-CH3), 3.45 (s, 3 H, NCH3), 3.82 (s, 3 H, 

OCH3), 4.52 – 4.53 (d, 1 H, 5-H, J = 3.50), 6.73 – 6.74 (d, 1 H, 6-H, J = 3.35), 7.03 – 

7.04 (d, 2 H, phenyl, J = 8.85), 7.26 – 7.28 (d, 2 H, phenyl, J = 6.7), 11.27 (s, 1 H, N7-H, 

D2O exchanged). HRMS m/z calculated for C15H17N4O [M+H]
+
, 269.1397; found, 

269.1385. Elemental analysis calculated for C15H16N4O·0.3045CHCl3: C, 60.33; H, 5.39; 

N, 18.39. Found: C, 60.20; H, 5.74; N, 18.66. 
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N-(4-methoxyphenyl)-N,2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine 

hydrochloride (91·HCl) 

To the solution of 91 (1 mmol, 268 mg) in diethyl ether in the ice bath was bubbled 

anhydrous HCl gas for 5 min. The salt precipitated from the solution and was collected to 

give a white solid after drying (180 mg, 60%); m.p. 247.5 – 249.7 ˚C. 
1
H NMR (500 

MHz, DMSO-d6): δ 2.70 (s, 3 H, 2-CH3), 3.66 (s, 3 H, NCH3), 3.85 (s, 3 H, OCH3), 4.59 

(s, 1 H, 5-H), 7.00 (s, 1 H, 6-H), 7.12 – 7.14 (d, 2 H, phenyl, J = 8.45), 7.42 – 7.43 (d, 2 

H, phenyl, J = 8.30), 11.59 (s, 1 H, N7-H, D2O exchanged). Elemental analysis calculated 

for C15H17ClN4O·0.5256H2O: C, 57.33; H, 5.79; N, 17.83; Cl, 11.28. Found: C, 57.33; H, 

5.68; N, 17.77; Cl, 11.33. 

 

N-(3-methoxyphenyl)-N,2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (92) 

After column chromatography (1 – 2% methanol in chloroform), 92 was obtained as 

white solid (370 mg, 70%). Rf 0.60 (CH3OH/CHCl3, 1:10); m.p. 174.8 – 176.3 ˚C. 
1
H 

NMR (DMSO-d6): δ 2.47 (s, 3 H, 2-CH3), 3.50 (s, 3 H, NCH3), 3.75 (s, 3 H, OCH3), 4.63 

– 4.64 (d, 1 H, 5-H, J = 3.48 Hz), 6.77 – 6.78 (d, 1 H, 6-H, J = 3.52 Hz), 6.91 (m, 1 H, 

phenyl), 6.92 (s, 1 H, phenyl), 6.97 – 6.99 (m, 1 H, phenyl), 7.37 – 7.41 (t, 1 H, phenyl), 

11.53 (s, 1 H, N7-H, D2O exchanged). HRMS m/z calculated for C15H16N4O [M+H]
+
, 

269.1397; found, 269.1392. Elemental analysis calculated for C15H16N4O: C, 67.15; H, 

6.01; N, 20.88. Found: C, 67.23; H, 6.15; N, 20.80. 
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N-(3-methoxyphenyl)-2-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (93) 

After column chromatography (1 – 3% methanol in chloroform), 93 was obtained as 

white solid (278 mg, 55%). Rf 0.50 (CH3OH/CHCl3, 1:10); m.p. 180.3 – 182.1 ˚C. 
1
H 

NMR (DMSO-d6): δ 2.38 (s, 3 H, 2-CH3), 3.83 (s, 3 H, OCH3), 6.70 – 6.71 (d, 1 H, 5-H, 

J = 3.64 Hz), 6.90 – 6.91 (d, 1 H, 6-H, J = 3.48 Hz), 7.04 (s, 1 H NH, D2O exchanged), 

7.41 – 7.50 (m, 4 H, phenyl), 11.41 (s, 1 H, 7-H, D2O exchanged). HRMS m/z calculated 

for C14H14N4O [M+H]
+
, 255.1240; found, 255.1250. Elemental analysis calculated for 

C14H14N4O·0.0623 CHCl3: C, 64.53; H, 5.42; N, 21.41. Found: C, 64.63; H, 5.70; N, 

21.09. 

 

N-(2-methoxyphenyl)-N,2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (94) 

After column chromatography (1 – 2% methanol in chloroform), 94 was obtained as 

white solid (340 mg, 65%). Rf 0.55 (CH3OH/CHCl3, 1:10); m.p. 234.0 – 236.9 ˚C. 
1
H 

NMR (DMSO-d6): δ 2.45 (s, 3 H, 2-CH3), 3.39 (s, 3 H, NCH3), 3.68 (s, 3 H, OCH3), 4.44 

(s, 1 H, 5-H), 6.68 – 6.70 (d, 1 H, 6-H, J = 3.56 Hz), 7.04 – 7.07 (m, 1 H, phenyl), 7.18 – 

7.20 (m, 1 H, phenyl), 7.29 – 7.31 (m, 1 H, phenyl), 7.43 – 7.47 (m, 1 H, phenyl), 11.25 

(s, 1 H, N7-H, D2O exchanged). HRMS m/z calculated for C15H16N4O [M+H]
+
, 269.1397; 

found, 269.1383. Elemental analysis calculated for C15H16N4O·0.0899 CH3CO2C2H5: C, 

66.78; H, 6.10; N, 20.28. Found: C, 67.07; H, 6.28; N, 20.13. 
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N-(2-methoxyphenyl)-2-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (95) 

After column chromatography (1 – 3% methanol in chloroform), 95 was obtained as 

white solid (255 mg, 50%). Rf 0.40 (CH3OH/CHCl3, 1:10); m.p. 207.7 – 209.6 ˚C. 
1
H 

NMR (DMSO-d6): δ 2.28 (s, 3 H, 2-CH3), 3.73 (s, 3 H, OCH3), 6.62 – 6.63 (d, 1 H, 5-H, 

J = 3.52 Hz), 6.93 (s, 1 H, NH, D2O exchanged), 7.08 (d, 1 H, 6-H, J = 3.40 Hz), 7.09 (m, 

1 H, phenyl), 7.22 – 7.24 (m, 1 H, phenyl), 7.35 – 7.37 (m, 1 H, phenyl), 7.41 – 7.43 (m, 

1 H, phenyl), 11.36 (s, 1 H, 7-H, D2O exchanged). HRMS m/z calculated for C14H14N4O 

[M+H]
+
, 255.1240; found, 255.1227. Elemental analysis calculated for C14H14N4O: C, 

66.13; H, 5.55; N, 22.03. Found: C, 66.16; H, 5.67; N, 21.70. 

 

N,2-dimethyl-N-(p-tolyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (96) 

After column chromatography (1 – 2% methanol in chloroform), 96 was obtained as 

white solid (397 mg, 75%). Rf 0.48 (CH3OH/CHCl3, 1:10); m.p. 265.8 – 268.7 ˚C. 
1
H 

NMR (400 MHz, DMSO-d6): δ 2.38 (s, 3 H, phenyl-CH3), 2.46 (s, 3 H, 2-CH3), 3.47 (s, 

3 H, NCH3), 4.53 – 4.54 (d, 1 H, 5-H, J = 3.48), 6.73 – 6.74 (d, 1 H, 6-H, J = 3.48), 7.21 

– 7.23 (d, 2 H, phenyl, J = 8.28), 7.28 – 7.30 (d, 2 H, phenyl, J = 8.12), 11.30 (s, 1 H, N7-

H, D2O exchanged). HRMS m/z calculated for C15H16N4 [M+H]
+
, 253.1448; found, 

253.1435. Elemental analysis calculated for C15H16N4·0.0625CHCl3: C, 69.64; H, 6.23; N, 

21.57. Found: C, 69.68; H, 6.30; N, 21.44. 
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N-(4-chlorophenyl)-N,2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (97) 

After column chromatography (1 – 2% methanol in chloroform), 97 was obtained as 

white solid (322 mg, 60%). Rf 0.50 (CH3OH/CHCl3, 1:10); m.p. 219.6 – 221.8 ˚C. 
1
H 

NMR (400 MHz, DMSO-d6): δ 2.47 (s, 3 H, 2-CH3), 3.50 (s, 3 H, NCH3), 4.68 – 4.69 (d, 

1 H, 5-H, J = 3.52), 6.83 – 6.84 (d, 1 H, 6-H, J = 3.52), 7.37 – 7.39 (d, 2 H, phenyl, J = 

8.64), 7.52 – 7.55 (d, 2 H, phenyl, J = 8.64), 11.41 (s, 1 H, N7-H, D2O exchanged). 

HRMS m/z calculated for C14H13N4Cl [M+H]
+
, 273.0902; found, 273.0889. Elemental 

analysis calculated for C14H13N4Cl: C, 61.65; H, 4.80; N, 20.54; Cl, 13.00. Found: C, 

61.79; H, 4.82; N, 20.46; Cl, 12.77. 

 

N-(3,4-dichlorophenyl)-N,2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (98) 

After column chromatography (1 – 2% methanol in chloroform), 97 was obtained as 

white solid (364 mg, 60%). Rf 0.55 (CH3OH/CHCl3, 1:10); m.p. 250.3 – 252.2 ˚C. 
1
H 

NMR (400 MHz, DMSO-d6): δ 2.48 (s, 3 H, 2-CH3), 3.52 (s, 3 H, NCH3), 4.87 – 4.88 (d, 

1 H, 5-H, J = 3.56), 6.92 – 6.93 (d, 1 H, 6-H, J = 3.60), 7.36 – 7.38 (m, 1 H, phenyl), 7.70 

– 7.73 (m, 2 H, phenyl), 11.50 (s, 1 H, N7-H, D2O exchanged). HRMS m/z calculated for 

C14H12N4Cl2 [M+H]
+
, 307.0512; found, 307.0504. Elemental analysis calculated for 

C14H12N4Cl2·0.0316CHCl3: C, 54.20; H, 3.90; N, 18.02; Cl, 23.88. Found: C, 54.03; H, 

3.85; N, 17.84; Cl, 23.72. 
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4-(methyl(2-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)phenol (99) 

To the solution of 91 (134 mg, 0.5 mmol) in CH2Cl2 (5 mL) under ice bath (0 °C) was 

slowly added BBr3 (0.142 mL, 376 mg, 1.5 mmol). The reaction mixture was stirred 

under 0 °C for 30 min before brought to room temperature. After three hours, saturated 

sodium bicarbonate (5 mL) was carefully added. Extraction with CH2Cl2 (2 × 10 mL) 

was followed by column chromatography (1 – 3% methanol in chloroform) before 99 

was obtained as a yellow solid (104 mg, 82%). Rf 0.60 (CH3OH/CHCl3, 1:5); m.p.225.7 – 

229.2 °C.
 1
HNMR (400 MHz, DMSO-d6): δ 2.48 (s, 3 H, 2-CH3), 3.46 (s, 3 H, N-CH3), 

4.54 – 4.55 (d, 1 H, 5-H, J = 2.72), 6.77 (d, 1 H, 6-H, J = 2.68), 9.74 (s, 1 H, OH), 11.45 

(s, 1 H, N7-H). Elemental analysis calculated for C14H14N4O·0.2287CHCl3: C, 60.69; H, 

5.09; N, 19.90. Found: C, 60.75; H, 5.36; N, 19.68. 

 

N-(naphthalen-2-yl)formamide (158) 

To the suspension of naphthalen-2-amine 155 (218 mg, 1.5 mmol) in water (3 mL) 

was added triethyl orthoformate (1 mL, 6 mmol). The reaction mixture was sealed in a 

microwave vial and irradiated in the microwave reactor at 100 °C for 10 hours. At the 

end of the reaction, the mixture was extracted with ethyl acetate (2 × 10 mL) and the 

organic layer was evaporated and subjected to flash chromatography (gradient from 0 to 

20% ethyl acetate in hexane, 18 mL/min). The product 158 was obtained in a yellow 

powder (190 mg, 74%). Rf 0.30 (hexane/ethyl acetate, 2:1); 
1
HNMR (400 MHz, DMSO-

d6): δ 7.40 – 7.68 (m, 3 H, naphthyl), 7.79 – 7.91 (m, 2 H, naphthyl), 8.30 (s, 1 H, 
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naphthyl), 8.37 (d, 1 H, naphthyl, J = 2), 8.94 – 8.97 (d, 1 H, CHO, J = 10.92), 10.42 (s, 1 

H, NH, D2O exchanged). 

 

N-methylnaphthalen-2-amine (159) 

To the solution of 158 (102 mg, 0.6 mmol) in anhydrous THF (2 mL) at room 

temperature was slowly added LiAlH4 (1 mL, 1M solution) in THF under a stream of 

nitrogen. The resulted solution was stirred under room temperature for two hours, during 

which the reaction progress was monitored by TLC. At the end of the reaction, methanol 

(5 mL) was slowly poured into the solution and the solution was evaporated to dryness. 

The mixture was then suspended in saturated ammonium chloride in water (5 mL) and 

extracted with ethyl acetate (2 × 10 mL). The organic layer was evaporated and purified 

through flash chromatography (gradient from 0 to 10% ethyl acetate in hexane, 18 

mL/min). The product 158 was obtained as dark red oil (65 mg, 70%). Rf 0.65 

(hexane/ethyl acetate, 2:1); 
1
HNMR (400 MHz, DMSO-d6): δ 2.76 – 2.78 (d, 3 H, CH3, J 

= 5.04), 5.96 – 5.97 (d, 1 H, NH, D2O exchanged, J = 4.88), 6.65 (d, 1 H, naphthyl, J = 

1.96), 6.93 – 6.96 (dd, 1 H, naphthyl), 7.08 – 7.12 (t, 1 H, naphthyl), 7.27 – 7.30 (t, 1 H, 

naphthyl), 7.32 – 7.64 (m, 4 H, naphthyl), 10.42 (s, 1 H, NH). 

 

General procedure for the synthesis of N,2-dimethyl-N-(naphthalen-2-yl)-7H-

pyrrolo[2,3-d]pyrimidin-4-amine (100) and 2-methyl-N-(naphthalen-2-yl)-7H-

pyrrolo[2,3-d]pyrimidin-4-amine (101) 
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To 153 (167 mg, 1 mmol) and 159 or 155 (1.2 mmol) in a microwave vial was added 

anhydrous 1,4-dioxane (1 mL). HCl gas was bubbled through the vial before it was sealed 

and placed in the microwave reactor. The reaction condition was set for 140 °C and six 

hours. At the end of the reaction, the mixture was evaporated to dryness and suspended in 

brine (5 mL). After extraction with ethyl acetate (2 × 10 mL), the organic layer was 

evaporated to dryness and purified by flash chromatography (gradient from 0% to 3% 

methanol in chloroform). 

 

N,2-dimethyl-N-(naphthalen-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (100) 

After flash chromatography, the target compound 100 was obtained as an off-white 

powder (193 mg, 65%). Rf 0.50 (CH3OH/CHCl3, 1:10); m.p. 213.0 – 215.2 °C. 
1
HNMR 

(400 MHz, DMSO-d6): δ 2.50 (s, 3 H, 2-CH3, 2.70 in CDCl3), 3.61 (s, 3 H, N-CH3), 4.7 

(d, 1 H, 5-H, J = 1.36), 6.69 – 6.70 (t, 1 H, 6-H), 7.48 – 7.51 (dd, 1 H, naphthyl), 7.55 – 

7.57 (m, 1 H, naphthyl), 7.91 (m, 1 H, naphthyl), 7.90 – 8.04 (m, 4 H, naphthyl), 11.34 (s, 

1 H, N7-H, D2O exchanged). Elemental analysis calculated for C18H16N4·0.1756 

CH3CO2C2H5: C, 73.94; H, 5.77; N, 18.44. Found: C, 73.83; H, 5.77; N, 18.55. 

 

2-methyl-N-(naphthalen-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (101) 

After flash chromatography, the target compound 101 was obtained as a pale yellow 

powder (173 mg, 60%). Rf 0.40 (CH3OH/CHCl3, 1:10); m.p. 272.8 – 275.3 °C. 
1
HNMR 

(400 MHz, DMSO-d6): δ 2.55 (s, 3 H, 2-CH3), 6.75 – 6.76 (d, 1 H, 5-H, J = 3.2), 7.16 – 
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7.17 (d, 1 H, 6-H, J = 3.2), 7.35 – 7.39 (m, 2 H, naphthyl), 7.45 – 7.47 (m, 2 H, naphthyl), 

7.81 – 7.88 (m, 1 H, naphthyl), 7.97 – 8.00 (m, 1 H, naphthyl), 8.61 (s, 1 H, naphthyl), 

9.43 (s, 1 H, NH), 11.56 (d, 1 H, N7-H, D2O exchanged, J = 0.4). Elemental analysis 

calculated for C17H14N4·0.0618CHCl3: C, 72.75; H, 5.03; N, 19.89. Found: C, 72.83; H, 

5.10; N, 19.61. 

 

N-(4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-2-yl)pivalamide (162) 

To the mixture of DMF (120 mL) and water (20 mL) at room temperature was added 

2,4-diamino-6-hydroxypyrimidine 1 (6.3 g, 50 mmol) and NaOAc (4.1 g, 50 mmol). 

After the solution turned clear, chloroacetaldehyde 160 (7.2 mL 50% aqueous solution, 

7.9 g, 50 mmol) was added. The reaction mixture was stirred for 24 hours. Then the 

solvent was removed under vacuum and water (5 mL) was added. The suspension was ice 

cooled and filtered. The solid containing 2-amino-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one 

161 was thoroughly dried under vacuum. To the dried solid was added trimethylacetic 

anhydride (20 mL) and refluxed for four hours. The remaining trimethylacetic anhydride 

was removed under vacuum at the end of the reaction. The remaining solid was added 

saturated sodium bicarbonate solution (20 mL) and extracted with ethyl acetate (2 × 40 

mL). The organic layer was evaporated and purified through column chromatography (1 

– 3% methanol in chloroform) to afford 162 in the form of white solid (5.3 g, 45% over 

two steps). Rf 0.30 (CH3OH:CHCl3, 1/10). 
1
HNMR (400 MHz, DMSO-d6): δ 1.24 (s, 9 H, 

Piv), 6.41 (d, 1 H, 5-H, J = 1.24), 6.96 (t, 1 H, 6-H), 10.81 (s, 1 H, N7-H, D2O 
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exchanged), 11.59 (s, 1 H, NHPiv, D2O exchanged), 11.85 (s, 1 H, 3-NH, D2O 

exchanged). 

 

N-(4-chloro-7H-pyrrolo[2,3-d]pyrimidin-2-yl)pivalamide (163) 

To the POCl3 (10 mL) in a round-bottom flask was added 162 (1.17 g, 5 mmol) and 

the mixture was refluxed for 3 hours. After the removal of remaining POCl3 under 

vacuum, saturated solution of sodium bicarbonate (10 mL) was carefully added. The 

mixture was extraction with ethyl acetate (2 × 20 mL). After evaporation, 163 was 

obtained as a pale yellow powder (1 g, 80%) and used without further purification. Rf 

0.45 (CH3OH/CHCl3, 1:10). An analytical sample was purified and analyzed by 
1
HNMR 

(400 MHz, DMSO-d6): δ 1.23 (s, 9 H, Piv), 6.53 – 6.54 (d, 1 H, 5-H, J = 3.56 Hz), 7.55 – 

7.56 (d, 1 H, 6-H, J = 3.56 Hz), 10.05 (s, 1 H, N7-H, D2O exchanged), 12.32 (s, 1 H, 

NHPiv, D2O exchanged). 

 

General procedure for the synthesis of N
4
-(4-methoxyphenyl)-N

4
-methyl-7H-

pyrrolo[2,3-d]pyrimidine-2,4-diamine (102) and N
4
-(4-methoxyphenyl)-7H-

pyrrolo[2,3-d]pyrimidine-2,4-diamine (103) 

To the solution of 163 (504 mg, 2 mmol) in isopropanol (5 mL) was added the 

corresponding aniline 164 (2.2 mmol). Anhydrous HCl gas was bubbled through the 

mixture under stirring until the solution became clear. The solution was refluxed for 4 

hours. At the end of the reaction, the reaction mixture was evaporated to dryness, added 
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saturated sodium bicarbonate (10 mL) and extracted with ethyl acetate (2 × 20 mL). The 

organic layer containing the pivaloyl-protected 165 or 166 was evaporated and dissolved 

in methanol (5 mL). Sodium hydroxide solution (2 N, 5 mL) was added and the solution 

was refluxed for three hours. The reaction mixture was evaporated to dryness at the end 

of the reaction and suspended in water (10 mL). After extraction with ethyl acetate (2 × 

20 mL), silica gel was added to the organic layer followed by flash chromatography (2 – 

4% methanol in chloroform).  

 

N-(4-((4-methoxyphenyl)(methyl)amino)-7H-pyrrolo[2,3-d]pyrimidin-2-

yl)pivalamide (165) 

A sample of 165 was analyzed with 
1
HNMR (500 MHz, DMSO-d6): δ 1.24 (s, 9 H, 

Piv), 3.47 (s, 3 H, NCH3), 3.83 (s, 3 H, OCH3), 4.52 (d, 1 H, 5-H, J = 1.45), 6.73 – 6.74 

(d, 1 H, 6-H, J = 1.00), 7.04 – 7.06 (d, 2 H, phenyl, J = 8.8), 7.27 – 7.28 (d, 2 H, phenyl, 

J = 8.75), 9.20 (s, 1 H, N7-H, D2O exchanged), 11.32 (s, 1 H, NHPiv, D2O exchanged). 

 

N
4
-(4-methoxyphenyl)-N

4
-methyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (102) 

After flash chromatography, 102 was obtained as a white solid (270 mg, 50% over two 

steps). Rf 0.40 (CH3OH/CHCl3, 1:10); m.p. 202.8 – 205.7 °C. 
1
HNMR (400 MHz, 

DMSO-d6): δ 3.39 (s, 3 H, NCH3), 3.81 (s, 3 H, OCH3), 4.39 – 4.40 (d, 1 H, 5-H, J = 

2.04), 5.59 (s, 2 H, NH2, D2O exchanged), 6.39 (d, 1 H, 6-H, J = 2.16), 7.00 – 7.03 (d, 2 

H, phenyl, J = 8.76), 7.22 – 7.25 (d, 2 H, phenyl, J = 8.76), 10.64 (s, 1 H, N7-H, D2O 
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exchanged). Elemental analysis calculated for C14H15N5O·0.0492CH3(CH2)4CH3: C, 

62.77; H, 5.78; N, 25.60. Found: C, 62.38; H, 5.79; N, 25.28. 

 

N
4
-(4-methoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (103) 

After flash chromatography, 103 was obtained as a white solid (205 mg, 40% over two 

steps). Rf 0.45 (CH3OH/CHCl3, 1:5); m.p. 189.5 – 192.9 °C. 
1
HNMR (400 MHz, DMSO-

d6): 
1
HNMR (400 MHz, DMSO-d6): δ 3.74 (s, 3 H, OCH3), 5.63 (s, 2 H, NH2, D2O 

exchanged), 6.46 (s, 1 H, 5-H), 6.62 (s, 1 H, 6-H), 6.72 (s, 2 H, phenyl), 7.78 (s, 2 H, 

phenyl), 8.76 (s, 1 H, NH, D2O exchanged) 10.64 (s, 1 H, N7-H, D2O exchanged). 

Elemental analysis calculated for C13H13N5O·0.1759CH3CO2C2H5: C, 60.79; H, 5.36; N, 

25.86; O, 6.27. Found: C, 61.08; H, 5.51; N, 25.81. 

 

N-(6-methyl-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-2-yl)pivalamide (171) 

To the mixture of DMF (120 mL) and water (20 mL) at room temperature was added 

2,4-diamino-6-hydroxypyrimidine 1 (6.3 g, 50 mmol) and NaOAc (4.1 g, 50 mmol). 

After the solution turned clear, chloroacetone 169 (4.6 g, 50 mmol) was added. The 

reaction mixture was stirred for 24 hours. Then the solvent was removed under vacuum 

and water (5 mL) was added. The suspension was ice cooled and filtered. The solid 

containing 2-amino-6-methyl-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one 170 was thoroughly 

dried under vacuum. To the dried solid was added trimethylacetic anhydride (20 mL) and 

refluxed for four hours. The remaining trimethylacetic anhydride was removed under 
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vacuum at the end of the reaction. The remaining solid was added saturated sodium 

bicarbonate solution (20 mL) and extracted with ethyl acetate (2 × 40 mL). The organic 

layer was evaporated and purified through column chromatography (1 – 3% methanol in 

chloroform) to afford 171 in the form of white solid (6.82 g, 55% over two steps). Rf 0.35 

(CH3OH:CHCl3, 1/10). 
1
HNMR (500 MHz, DMSO-d6): δ 1.24 (s, 9 H, Piv), 1.76 (s, 3 H, 

6-CH3), 2.26 (s, 3 H, 2-CH3), 6.08 (s, 1 H, 5-H), 10.75 (s, 1 H, N7-H, D2O exchanged), 

11.35 (s, 1 H, NHPiv, D2O exchanged), 11.79 (s, 1 H, 3-NH, D2O exchanged). 

 

General procedure for the synthesis of 104 - 109 

To the solution of 172 (266 mg, 1 mmol) in isopropanol (5 mL) was added the 

corresponding N-methyl-aniline 173 (1.1 mmol). Anhydrous HCl gas was bubbled 

through the mixture under stirring until the solution became clear. The solution was 

refluxed or microwave-irradiated (140 °C) for 4 hours. At the end of the reaction, the 

reaction mixture was evaporated to dryness, added saturated sodium bicarbonate (10 mL) 

and extracted with ethyl acetate (2 × 20 mL). The organic layer containing the pivaloyl-

protected intermediate (174 – 179) was evaporated and dissolved in methanol (5 mL). 

Sodium hydroxide solution (2 N, 5 mL) was added and the solution was refluxed for 

three hours. The reaction mixture was evaporated to dryness at the end of the reaction and 

suspended in water (10 mL). After extraction with ethyl acetate (2 × 20 mL), silica gel 

was added to the organic layer followed by flash chromatography (2 – 4% methanol in 

chloroform). 
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N
4
-(4-methoxyphenyl)-N

4
,6-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (104) 

After flash chromatography, 104 was obtained as a pale yellow solid (170 mg, 60% 

over two steps). Rf 0.45 (CH3OH/CHCl3, 1:10); m.p. 194.3 – 198.2 °C. 
1
HNMR (500 

MHz, DMSO-d6): δ 2.01 (s, 1 H, 6-CH3), 3.50 (s, 3 H, NCH3), 3.84 (s, 3 H, OCH3), 4.19 

(s, 1 H, 5-H,), 6.35 (s, 2 H, NH2, D2O exchanged), 7.08 – 7.09 (d, 2 H, phenyl, J = 8.90), 

7.32 (d, 2 H, phenyl, J = 8.76), 11.61 (s, 1 H, N7-H, D2O exchanged). HRMS m/z 

calculated for C15H17N5O [M+H]
+
, 284.1506; found, 284.1502. Elemental analysis 

calculated for C15H17N5O·0.9321CH3CN·0.1155CHCl3: C, 60.81; H, 5.98; N, 24.77. 

Found: C, 60.81; H, 5.89; N, 24.79. 

 

N
4
-(3-methoxyphenyl)-N

4
,6-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (105) 

After flash chromatography, 105 was obtained as an off-white solid (127 mg, 45% 

over two steps). Rf 0.45 (CH3OH/CHCl3, 1:10); m.p. 178.5 – 181.4 °C. 
1
HNMR (400 

MHz, DMSO-d6): δ 1.98 (s, 1 H, 6-CH3), 3.41 (s, 3 H, NCH3), 3.75 (s, 3 H, OCH3), 4.29 

(s, 1 H, 5-H,), 5.55 (s, 2 H, NH2, D2O exchanged), 6.82 – 6.84 (m, 1 H, phenyl), 6.90 – 

6.92 (m, 1 H, phenyl), 7.31 – 7.33 (m, 1 H, phenyl), 10.55 (s, 1 H, N7-H, D2O 

exchanged). HRMS m/z calculated for C15H17N5O [M+H]
+
, 284.1506; found, 284.1497. 

Elemental analysis calculated for C15H17N5O·0.0321CH3(CH2)4CH3: C, 63.78; H, 6.15; N, 

24.48. Found: C, 64.00; H, 6.14; N, 24.65. 
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N
4
-(2-methoxyphenyl)-N

4
,6-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (106) 

After flash chromatography, 106 was obtained as an off-white solid (127 mg, 45% 

over two steps). Rf 0.40 (CH3OH/CHCl3, 1:10); m.p. 148.4 – 151.3 °C. 
1
HNMR (400 

MHz, DMSO-d6): δ 1.93 (s, 1 H, 6-CH3), 3.34 (s, 3 H, NCH3), 3.70 (s, 3 H, OCH3), 4.04 

(s, 1 H, 5-H), 5.45 (s, 2 H, NH2, D2O exchanged), 7.02 (t, 1 H, phenyl), 7.15 – 7.18 (t, 1 

H, phenyl), 7.21 – 7.23  (t, 1 H, phenyl), 7.41 (t, 1 H, phenyl), 10.46 (s, 1 H, N7-H, D2O 

exchanged). HRMS m/z calculated for C15H17N5O [M+H]
+
, 284.1506; found, 284.1500. 

Elemental analysis calculated for C15H17N5O·0.5297CH3OH: C, 62.11; H, 6.42; N, 23.32. 

Found: C, 62.09; H, 6.08; N, 23.25. 

 

N
4
,6-dimethyl-N

4
-(p-tolyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (107) 

After flash chromatography, 107 was obtained as a white solid (147 mg, 55% over two 

steps). Rf 0.40 (CH3OH/CHCl3, 1:10); m.p. 230.4 – 233.3 °C. 
1
HNMR (400 MHz, 

DMSO-d6): δ 1.96 (s, 1 H, 6-CH3), 2.09 (s, 3 H, phenyl-CH3), 3.40 (s, 3 H, NCH3), 4.19 

(s, 1 H, 5-H,), 5.76 (s, 2 H, NH2, D2O exchanged), 7.16 – 7.18 (d, 2 H, phenyl, J = 8.2), 

7.25 – 7.27 (d, 1 H, phenyl, J = 8.12), 10.69 (s, 1 H, N7-H, D2O exchanged).  HRMS m/z 

calculated for C15H17N5 [M+H]
+
, 268.1557; found, 268.1573. Elemental analysis 

calculated for C15H17N5: C, 67.39; H, 6.41; N, 26.20. Found: C, 67.11; H, 6.30; N, 25.82. 
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N
4
-(4-chlorophenyl)-N

4
,6-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (108) 

After flash chromatography, 108 was obtained as a pale yellow solid (115 mg, 40% 

over two steps). Rf 0.45 (CH3OH/CHCl3, 1:10); m.p. 223.7 – 226.4 °C. 
1
HNMR (400 

MHz, DMSO-d6): δ 2.01 (s, 1 H, 6-CH3), 3.41 (s, 3 H, NCH3), 4.36 (s, 1 H, 5-H,), 5.59 (s, 

2 H, NH2, D2O exchanged), 7.28 – 7.30 (d, 2 H, phenyl, J = 8.68), 7.47 – 7.49 (d, 2 H, 

phenyl, J = 8.6), 10.63 (s, 1 H, N7-H, D2O exchanged).  HRMS m/z calculated for 

C15H17ClN5 [M+H]
+
, 288.1010; found, 288.1036. Elemental analysis calculated for 

C14H14ClN5·0.0711H2O·0.0262CHCl3: C, 57.66; H, 4.89; N, 23.97, Cl, 13.09. Found: C, 

57.81; H, 4.88; N, 23.62; Cl, 13.07. 

 

N
4
-(3,4-dichlorophenyl)-N

4
,6-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine 

(109) 

After flash chromatography, 109 was obtained as a pale yellow solid (128 mg, 40% 

over two steps). Rf 0.42 (CH3OH/CHCl3, 1:10); m.p. 239.2 – 243.9 °C. 
1
HNMR (400 

MHz, DMSO-d6): δ 2.05 (s, 1 H, 6-CH3), 3.44 (s, 3 H, NCH3), 4.58 (s, 1 H, 5-H,), 5.69 (s, 

2 H, NH2, D2O exchanged), 7.24 – 7.27 (m, 1 H, phenyl), 7.57 – 7.65 (m, 2 H, phenyl), 

10.74 (s, 1 H, N7-H, D2O exchanged). HRMS m/z calculated for C14H13Cl2N5 [M+H]
+
, 

322.0621; found, 322.0632. Elemental analysis calculated for 

C14H13N5Cl2·1.1117CH3CN·0.2422CHCl3: C, 49.85; H, 4.21; N, 21.58, Cl, 24.36. Found: 

C, 49.80; H, 4.27; N, 21.49; Cl, 24.31. 

 



www.manaraa.com

110 
 

6-methoxy-1-(2-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1,2,3,4-tetrahydro-

quinoline (110) 

To the solution of 6-methoxy-1,2,3,4-tetrahydroquinoline 181 (180 mg, 1.1 mmol) in 

1,4-dioxane was added 2-methyl-4-chloro-pyrrolopyrimidine 153 (167 mg, 1 mmol). Dry 

HCl gas was bubbled through before the solution was sealed in a microwave vial. The 

vial was placed in a microwave reactor and irradiated at 180 °C for six hours. At the end 

of the reaction, the reaction mixture was evaporated to dryness and suspended in 

saturated sodium bicarbonate solution (5 mL). The suspension was extracted with ethyl 

acetate (2 × 20 mL). The organic layer was evaporated and purified through flash 

chromatography (1 – 2% methanol in chloroform) before 110 was obtained as a white 

powder (190 mg, 65%). Rf 0.41 (CH3OH/CHCl3, 1:10); m.p. 176.1 – 177.5 °C. 
1
HNMR 

(500 MHz, DMSO-d6): δ 1.92 (q, 2 H, CH2), 2.47 (s, 3 H, 2-CH3), 2.72 (t, 2 H, CH2), 

3.76 (s, 3 H, OCH3), 3.99 (t, 2 H, NCH2), 5.42 – 5.43 (d, 1 H, 5-H, J = 3.45), 6.70 – 6.71 

(d, 1 H, phenyl, J = 8.75), 6.82 – 6.83 (d, 1 H, 6-H, J = 2.85), 6.95 – 6.96 (d, 1 H, phenyl, 

J = 5.8), 7.58 (s, 1 H, phenyl), 11.45 (s, 1 H, N7-H, D2O exchanged). HRMS m/z 

calculated for C17H18N4O [M+H]
+
, 295.1553; found, 295.1540. Elemental analysis 

calculated for C17H18N4O: C, 69.37; H, 6.16; N, 19.13. Found: C, 69.00; H 6.21; N, 19.13. 

 

4-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine 

(111) 

To the solution of 6-methoxy-1,2,3,4-tetrahydroquinoline 181 (180 mg, 1.1 mmol) in 

1,4-dioxane was added the pivaloyl protected 2-amino-4-chloro-pyrrolopyrimidine 163 
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(252 mg, 1 mmol). Dry HCl gas was bubbled through before the solution was sealed in a 

microwave vial. The vial was placed in a microwave reactor and irradiated at 180 °C for 

six hours. At the end of the reaction, the reaction mixture was evaporated to dryness and 

suspended in saturated sodium bicarbonate solution (5 mL). The suspension was 

extracted with ethyl acetate (2 × 20 mL). The organic layer was evaporated and dissolved 

in methanol (5 mL). Sodium hydroxide solution (2 N, 5 mL) was added and the solution 

was refluxed for three hours. The reaction mixture was evaporated to dryness at the end 

of the reaction and suspended in water (10 mL). After extraction with ethyl acetate (2 × 

20 mL), silica gel was added to the organic layer followed by flash chromatography (1 – 

2% methanol in chloroform). The target compound 111 was obtained as a white powder 

(135 mg, 45% over two steps). Rf 0.27 (CH3OH/CHCl3, 1:10); m.p. 192.5 – 195.0 °C.
 

1
HNMR (500 MHz, DMSO-d6): δ 1.86 – 1.88 (q, 2 H, CH2), 2.47 (s, 3 H, 2-CH3), 2.72 (t, 

2 H, CH2), 3.75 (s, 3 H, OCH3), 3.91 (t, 2 H, NCH2), 5.27 – 5.28 (d, 1 H, 5-H, J = 3.6), 

5.64 (s, 2 H, 2-NH2, D2O exchanged), 6.60 (d, 1 H, phenyl, J = 3.55), 6.68 – 6.69 (d, 1 H, 

6-H, J = 2.9), 6.70 – 6.71 (d, 1 H, phenyl, J = 3), 7.00 – 7.02 (d, 1 H, phenyl, J = 8.8), 

10.79 (s, 1 H, N7-H, D2O exchanged). HRMS m/z calculated for C16H17N5O [M+H]
+
, 

296.1506; found, 296.1525. Elemental analysis calculated for C16H17N5O·0.0451CHCl3: 

C, 64.08; H, 5.71; N, 23.29. Found: C, 64.22; H 5.96; N, 22.91. 
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4-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-6-methyl-7H-pyrrolo[2,3-d]pyrimidin-

2-amine (112) 

To the solution of 6-methoxy-1,2,3,4-tetrahydroquinoline 181 (180 mg, 1.1 mmol) in 

1,4-dioxane was added the pivaloyl protected 2-amino-4-chloro-6-methyl-

pyrrolopyrimidine 172 (266 mg, 1 mmol). Dry HCl gas was bubbled through before the 

solution was sealed in a microwave vial. The vial was placed in a microwave reactor and 

irradiated at 180 °C for six hours. At the end of the reaction, the reaction mixture was 

evaporated to dryness and suspended in saturated sodium bicarbonate solution (5 mL). 

The suspension was extracted with ethyl acetate (2 × 20 mL). The organic layer was 

evaporated and dissolved in methanol (5 mL). Sodium hydroxide solution (2 N, 5 mL) 

was added and the solution was refluxed for three hours. The reaction mixture was 

evaporated to dryness at the end of the reaction and suspended in water (10 mL). After 

extraction with ethyl acetate (2 × 20 mL), silica gel was added to the organic layer 

followed by flash chromatography (1 – 2% methanol in chloroform). The target 

compound 112 was obtained as a white powder (154 mg, 50% over two steps). Rf 0.30 

(CH3OH/CHCl3, 1:10); m.p. 191.6 – 194.2 °C 
1
HNMR (500 MHz, DMSO-d6): δ 1.88 (q, 

2 H, CH2), 2.09 (s, 3 H, 6-CH3), 2.66 (s, 3 H, 2-CH3), 2.72 (t, 2 H, CH2), 3.76 (s, 3 H, 

OCH3), 3.90 (t, 2 H, NCH2), 5.03 (s, 1 H, 5-H), 6.35 (s, 2 H, 2-NH2, D2O exchanged), 

6.70 – 6.72 (d, 1 H, phenyl, J = 5.9), 6.80 (d, 1 H, phenyl, J = 2.75), 7.00 – 7.02 (d, 1 H, 

phenyl, J = 8.8), 8.33 (s, 1 H, phenyl), 10.91 (s, 1 H, N7-H). HRMS m/z calculated for 

C17H19N5O [M+H]
+
, 310.1662; found, 310.1649. Elemental analysis calculated for 

C17H19N5O·0.5288H2O: C, 64.03; H, 6.34; N, 21.96. Found: C, 64.00; H 6.19; N, 22.01. 
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6-methoxy-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1,2,3,4-tetrahydroquinoline (113) 

To the solution of 6-methoxy-1,2,3,4-tetrahydroquinoline 181 (180 mg, 1.1 mmol) in 

1,4-dioxane was added 4-chloro-pyrrolopyrimidine 180 (153 mg, 1 mmol). Dry HCl gas 

was bubbled through before the solution was sealed in a microwave vial. The vial was 

placed in a microwave reactor and irradiated at 180 °C for six hours. At the end of the 

reaction, the reaction mixture was evaporated to dryness and suspended in saturated 

sodium bicarbonate solution (5 mL). The suspension was extracted with ethyl acetate (2 × 

20 mL). The organic layer was evaporated and purified through flash chromatography (2 

– 4% methanol in chloroform) before 113 was obtained as a white powder (210 mg, 75%). 

Rf 0.50 (CH3OH/CHCl3, 1:10); m.p. 173.8 – 175.1 °C 
1
HNMR (500 MHz, DMSO-d6): δ 

1.90 – 1.93 (q, 2 H, CH2), 2.72 – 2.75 (t, 2 H, CH2), 3.77 (s, 3 H, OCH3), 3.98 – 4.01 (t, 2 

H, NCH2), 5.52 – 5.53 (d, 1 H, 5-H, J = 1.8), 6.72 – 6.73 (d, 1 H, phenyl, J = 5.85), 6.84 

(d, 1 H, 6-H, J = 2.9), 7.05 – 7.06 (d, 1 H, phenyl, J = 8.8), 8.30 (s, 1 H, phenyl), 11.69 (s, 

1 H, N7-H). HRMS m/z calculated for C16H16N4O [M+H]
+
, 281.1397; found, 281.1424. 

Elemental analysis calculated for C16H16N4O: C, 68.38; H, 6.02; N, 19.73. Found: C, 

68.38; H 6.02; N, 19.73. 

 

N-(4-methoxyphenyl)-N,2,7-trimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (114) 

To 91 (134 mg, 0.5 mmol) in a microwave vial was added anhydrous cesium 

carbonate (195 mg, 0.6 mmol), anhydrous DMF (1 mL) and iodomethane (0.037 mL, 85 

mg, 0.6 mmol). The vial was quickly sealed and reaction mixture was irradiated by 

microwave under 120 °C for four hours. At the end of the reaction, DMF was evaporated 
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under vacuum and the dried mixture was suspended in water (5 mL). The suspension was 

extracted with ethyl acetate (2 × 20 mL). The organic layer was evaporated and purified 

through flash chromatography (2 – 4% methanol in chloroform) before 114 was obtained 

as a yellow powder (120 mg, 85%). Rf 0.60 (CH3OH/CHCl3, 1:10); m.p. deg. 190 °C. 
1
H 

NMR (400 MHz, DMSO-d6): δ 2.49 (s, 3 H, 2-CH3), 3.46 (s, 3 H, NCH3), 3.82 (s, 3 H, 

OCH3), 4.52 – 4.53 (d, 1 H, 5-H, J = 3.2), 6.78 – 6.79 (d, 1 H, 6-H, J = 3.6), 7.03 – 7.05 

(d, 2 H, phenyl, J = 9.2), 7.25 – 7.28 (d, 2 H, phenyl, J = 9.2). Elemental analysis 

calculated for C16H18N4O: C, 68.06; H, 6.43; N, 19.84. Found: C, 68.06; H, 6.48; N, 

19.75. 

 

N-(4-methoxyphenyl)-N,2,7-trimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine 

hydrochloride salt (114·HCl) 

To the solution of 114 (85 mg, 0.3 mmol,) in diethyl ether in the ice bath was bubbled 

anhydrous HCl gas for 5 min. The salt precipitated from the solution and was collected to 

give a white solid after drying (68 mg, 70%). Elemental analysis calculated for 

C16H18N4O·HCl: C, 60.28; H, 6.01; N, 17.57, Cl, 11.12. Found: C, 59.91; H, 6.04; N, 

17.47; Cl, 11.19. 
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7-benzyl-N-(4-methoxyphenyl)-N,2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine 

(115) 

To 91 (134 mg, 0.5 mmol) in a microwave vial was added anhydrous cesium 

carbonate (195 mg, 0.6 mmol), anhydrous DMF (1 mL) and benzyl bromide (0.072 mL, 

103 mg, 0.6 mmol). The vial was quickly sealed and reaction mixture was irradiated by 

microwave under 120 °C for four hours. At the end of the reaction, DMF was evaporated 

under vacuum and the dried mixture was suspended in water (5 mL). The suspension was 

extracted with ethyl acetate (2 × 20 mL). The organic layer was evaporated and purified 

through flash chromatography (0 – 15% ethyl acetate in hexane) before 115 was obtained 

as a yellow oil.  Recrystallization from acetone/hexane provided 115 as a yellow powder 

(302 mg, 85%). Rf 0.75 (ethyl acetate/hexane, 1:1); m.p. 102.1 – 103.4 °C. 
1
HNMR (400 

MHz, DMSO-d6): δ 2.48 (s, 3 H, 2-CH3), 3.47 (s, 3 H, NCH3), 3.82 (s, 3 H, OCH3), 4.56 

– 4.57 (d, 1 H, 5-H, J = 3.52), 5.27 (s, 1 H, 6-H), 6.86 – 6.87 (d, 1 H, benzyl, J = 3.48), 

7.03 – 7.05 (d, 2 H, phenyl, J = 8.84), 7.11 – 7.13 (d, 2 H, phenyl, J = 7.48), 7.23 – 7.30 

(m, 4 H, benzyl). Elemental analysis calculated for C22H22N4O: C, 73.72; H, 6.19; N, 

15.63. Found: C, 73.39; H, 6.27; N, 15.58. 

 

N-(4-methoxyphenyl)-N,2-dimethyl-7-tosyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine 

(116) 

To the stirred solution of 91 (134 mg, 0.5 mmol) in dichloromethane (5 mL) was 

added sodium hydroxide (80 mg, 2 mmol) and tetrabutylammonium hydrogensulfate 

(33.9 mg, 0.1 mmol). After the solution turned clear, tosyl chloride (190 mg, 1 mmol) 
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was added and the reaction mixture was stirred at room temperature for six hours. At the 

end of the reaction, the organic layer was collected and washed with water (2 × 5 mL). 

The solvent was evaporated under vacuum and the mixture was purified through flash 

chromatography (0 – 20% ethyl acetate in hexane) before 116 was obtained as a white 

powder (310 mg, 75%). Rf 0.65 (ethyl acetate/hexane, 1:1); m.p. 195.7 – 197.1 °C. 

1
HNMR (500 MHz, DMSO-d6): δ 2.36 (s, 3 H, tosyl-CH3), 2.42 (s, 3 H, tosyl-CH3), 

2.49(s, 3 H, 2-CH3), 3.46 (s, 3 H, NCH3), 3.86 (s, 3 H, OCH3), 4.65 – 4.66 (d, 1 H, 5-H, J 

= 4.05), 7.05 – 7.06 (d, 2 H, phenyl, J = 8.8), 7.27 – 7.28 (d, 2 H, phenyl, J = 8.8), 7.42 – 

7.43 (d, 2 H, tosyl, J = 8.1). 7.95 – 7.97  (d, 2 H, tosyl, J = 8.35). HRMS m/z calculated 

for C22H22N4O3S [M+H]
+
, 423.1485; found, 423.1499. Elemental analysis calculated for 

C22H22N4O3S·0.1944CH3CO2C2H5: C, 62.23; H, 5.40; N, 12.74; S, 7.29. Found: C, 62.10; 

H 5.41; N, 12.72; S, 7.47. 

 

2-pivalamido-7-tosyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl 4-methylbenzenesulfonate 

(188) 

To the stirred solution of 162 (234 mg, 1 mmol) in dichloromethane (10 mL) was 

added sodium hydroxide (160 mg, 4 mmol) and tetrabutylammonium hydrogensulfate 

(68 mg, 0.2 mmol). After the solution turned clear, tosyl chloride (475 mg, 2.5 mmol) 

was added and the reaction mixture was stirred at room temperature for six hours. At the 

end of the reaction, the organic layer was collected and washed with water (2 × 10 mL). 

Small quantity of mono-tosylated product 189 was also present in the organic layer. The 

solvent was evaporated under vacuum and the mixture was used for next step without 
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further purification. Rf 0.60 (ethyl acetate/hexane, 1:1). A sample of 188 was purified 

through flash chromatography (0 – 20% ethyl acetate in hexane) and analyzed by 

1
HNMR (400 MHz, DMSO-d6): δ 1.31 (s, 9 H, Piv), 2.36 (s, 3 H, tosyl-CH3), 2.42 (s, 3 

H, tosyl-CH3), 6.58 – 6.59 (d, 1 H, 5-H, J = 4.04), 7.41 – 7.43 (d, 2 H, tosyl, J = 8). 7.45 

– 7.47  (d, 2 H, tosyl, J = 8.16), 7.79 – 7.80 (d, 1 H, 6-H, J = 4.08), 8.08 – 8.10 (d, 2 H, 

tosyl, J = 8.4), 8.31 – 8.33 (d, 2 H, tosyl, J = 8.44), 10.15 (s, 1 H, NHPiv, D2O 

exchanged). 

 

N-(4-oxo-7-tosyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-2-yl)pivalamide (189) 

The mixture containing 188 from the previous step was dissolved in methanol (10 mL). 

To the solution was added concentrated HCl (1 mL) followed by reflux for one hour. The 

solvent was then removed under vacuum. The resulted mixture was suspended in 

saturated sodium bicarbonate solution (10 mL) and extracted with ethyl acetate (2 × 10 

mL). The organic layer was evaporated and purified through flash chromatography (0 – 

30% ethyl acetate in hexane) before 189 was obtained as a white solid (290 mg, 75% 

over two steps). Rf 0.45 (ethyl acetate/hexane, 1:1). 
1
HNMR (400 MHz, DMSO-d6): δ 

1.30 (s, 9 H, Piv), 2.39 (s, 3 H, tosyl-CH3), 6.65 – 6.66 (d, 1 H, 5-H, J = 3.04), 7.39 – 

7.40 (d, 1 H, 6-H, J = 3), 7.44 – 7.45 (d, 2 H, tosyl, J = 6.62), 8.18 – 8.19 (d, 2 H, tosyl, J 

= 6.52), 10.15 (s, 1 H, NHPiv, D2O exchanged), 12.20 (s, 1 H, 3-NH, D2O exchanged). 
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N-(4-oxo-7-tosyl-4,5,6,7-tetrahydro-3H-pyrrolo[2,3-d]pyrimidin-2-yl)pivalamide 

(190) 

To the solution of 189 (194 mg, 0.5 mmol) in methanol (10 mL) was added palladium 

hydroxide (45%) on carbon (150 mg). The resulted suspension was hydrogenated (50 psi) 

in a Parr apparatus under room temperature for four hours. At the end of the reaction, the 

suspension was filtered through a layer of celite and washed with methanol (40 mL). The 

filtrated was evaporated to afford 190 (175 mg, 90%) in pure form. Rf 0.43 (ethyl 

acetate/hexane, 1:1). 
1
HNMR (400 MHz, DMSO-d6): δ 1.28 (s, 9 H, Piv), 2.38 (s, 3 H, 

tosyl-CH3), 2.64 – 2.68 (t, 2 H, 5-H), 3.88 – 3.92 (t, 2 H, 6-H), 7.37 – 7.39 (d, 2 H, tosyl, 

J = 8.04), 8.03 – 8.05 (d, 2 H, tosyl, J = 8.08), 10.97 (s, 1 H, NHPiv, D2O exchanged), 

11.95 (s, 1 H, 3-NH, D2O exchanged). 

 

N-(4-chloro-7-tosyl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-2-yl)pivalamide (191) 

To the POCl3 (5 mL) in a round-bottom flask was added 190 (170 mg, 0.5 mmol) and 

the mixture was refluxed for 3 hours. After the removal of remaining POCl3 under 

vacuum, saturated solution of saturated sodium bicarbonate (10 mL) was carefully added. 

The mixture was extraction with ethyl acetate (2 × 20 mL). After evaporation, 191 was 

obtained as a white solid (155 mg, 80%) and used without further purification. Rf 0.60 

(ethyl acetate/hexane, 1:1). An analytical sample was purified and analyzed by 
1
HNMR 

(400 MHz, DMSO-d6): δ 1.26 (s, 9 H, Piv), 2.37 (s, 3 H, tosyl-CH3), 2.99 – 3.03 (t, 2 H, 

5-H), 4.06 – 4.09 (t, 2 H, 6-H), 7.36 – 7.38 (d, 2 H, tosyl, J = 8.08), 8.21 – 8.23 (d, 2 H, 

tosyl, J = 8.04), 10.16 (s, 1 H, NHPiv, D2O exchanged). 
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N
4
-(4-methoxyphenyl)-N

4
-methyl-7-tosyl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidine-

2,4-diamine (192) 

To 191 (122 mg, 0.3 mmol) in a microwave vial was added 4-methoxy-N-

methylaniline 168 (69 mg, 0.5 mmol) and 1,4-dixoane (3 mL). Anhydrous hydrochloride 

gas was bubbled through the solution before the vial was sealed. The reaction mixture 

was then irradiated under microwave at 180 ˚C for six hours. At end of the reaction, the 

solvent was removed under vacuum and saturated sodium bicarbonate solution (10 mL) 

was added to suspend the mixture. After extraction with ethyl acetate (2 × 20 mL), the 

organic layer was evaporated and purified through flash chromatography (0 – 30% ethyl 

acetate in hexane) before 192 was obtained as a pale yellow solid (90 mg, 70%). Rf 0.52 

(ethyl acetate/hexane, 1:1); m.p. 163.9 – 166.4 °C. 
1
HNMR (400 MHz, DMSO-d6): δ 

2.38 (s, 3 H, tosyl-CH3), 1.73 (t, 2 H, 5-H), 3.23 (s, 1  H, NCH3), 3.51 (t, 2 H, 6-H), 

3.75 (s, 1 H, OCH3), 6.20 (s, 2 H, 2-NH2, D2O exchanged), 6.90 – 6.93 (d, 2 H, phenyl, J 

= 8.84), 7.10 – 7.13 (d, 2 H, phenyl, J = 8.8), 7.34 – 7.36 (d, 2 H, tosyl, J = 8.24), 7.91 – 

7.93 (d, 2 H, tosyl, J = 8.28). 

 

N
4
-(4-methoxyphenyl)-N

4
-methyl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidine-2,4-

diamine (118) 

To the solution of 192 (85 mg, 0.2 mmol) in anhydrous methanol (10 mL) was added 

magnesium turnings (100 mg). The resulted suspension was sonicated by an ultrasound 

sonicator for 30 minutes and stirred under room temperature for additional three hours, 

during which the change of magnesium turnings into cloudy precipitate was observed. At 
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the end of reaction, the precipitate was filtered through celite and washed with methanol 

(30 mL). The filtrated was evaporated to afford 118 (77 mg, 90%) in pure form. Rf 0.40 

(CH3OH/CHCl3, 1:5); m.p. 150.7 – 153.4 °C. 
1
HNMR (400 MHz, DMSO-d6): δ 1.79 – 

1.83 (t, 2 H, 5-H), 3.05 – 3.09 (t, 2 H, 6-H), 3.26 (s, 1 H, NCH3), 3.51 (t, 2 H, 6-H), 3.76 

(s, 1 H, OCH3), 5.58 (s, 1 H, N7-H, D2O exchanged), 6.01 (s, 2 H, 2-NH2, D2O 

exchanged), 6.91 – 6.93 (d, 2 H, phenyl, J = 8.88), 7.10 – 7.12 (d, 2 H, phenyl, J = 8.84). 

Elemental analysis calculated for C14H17N5O·0.1284CH3CO2C2H5: C, 61.98; H, 6.32; N, 

25.81. Found: C, 61.83; H, 6.39; N, 24.73. 

 

N-(4-methoxyphenyl)-2-methyl-7-tosyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (201) 

To the solution of 90 (127 mg, 0.5 mmol) in dichloromethane (5 mL) was added 

sodium hydroxide (160 mg, 4 mmol) and tetrabutylammonium hydrogensulfate (68 mg, 

0.2 mmol). After the solution turned clear, tosyl chloride (285 mg, 1.5 mmol) was added 

and the reaction mixture was stirred at room temperature for six hours. At the end of the 

reaction, the organic layer was collected and washed with water (2 × 5 mL) before the 

solvent was evaporated under vacuum. The dried mixture was purified through flash 

chromatography (0 – 20% ethyl acetate in hexane) to afford 201 as a white solid (146 mg, 

72%). Rf 0.32 (ethyl acetate/hexane, 1:2); m.p. 215.5 – 218.1 ˚C. 
1
HNMR (400 MHz, 

DMSO-d6): δ 2.37 (s, 3 H, tosyl-CH3), 2.46 (s, 3 H, 2-CH3), 3.75 (s, 3 H, OCH3), 6.85 (s, 

1 H, 5-H), 6.92 – 6.94 (d, 2 H, tosyl, J = 9.04), 7.44 – 7.46 (d, 2 H, phenyl, J = 8.4), 7.53 

– 7.54  (d, 1 H, 6-H, J = 3.92), 7.61 – 7.63 (d, 2 H, phenyl, J = 8.76), 8.00 – 8.02 (d, 2 H, 

tosyl, J = 8.4), 9.41 (s, 1 H, NH, D2O exchanged). 
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N-(4-methoxyphenyl)-2-methyl-7-tosyl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-4-

amine (202) 

To the solution of 201 (122 mg, 0.3 mmol) in methanol (10 mL) was added palladium 

hydroxide (45%) on carbon (150 mg). The resulted suspension was hydrogenated (50 psi) 

in a Parr apparatus under room temperature for four hours. At the end of the reaction, the 

suspension was filtered through a layer of celite and washed with methanol (40 mL). The 

filtrated was evaporated to afford 202 (104 mg, 84%) in pure form. Rf 0.30 (ethyl 

acetate/hexane, 1:2). 
1
HNMR (400 MHz, DMSO-d6): δ 2.33 (s, 3 H, 2-CH3), 2.37 (s, 3 H, 

tosyl-CH3), 2.78 – 2.81 (t, 2 H, 5-H), 3.72 (s, 3 H, OCH3), 3.92 – 3.96 (t, 2 H, 6-H), 6.85 

– 6.88 (d, 2 H, phenyl, J = 9), 7.39 – 7.41 (d, 2 H, tosyl, J = 6.2), 7.45 – 7.47 (d, 2 H, 

phenyl, J = 8.92), 7.89 – 7.91 (d, 2 H, tosyl, J = 8.16), 8.61 (s, 1 H, NH, D2O exchanged). 

 

N-(4-methoxyphenyl)-N,2-dimethyl-7-tosyl-6,7-dihydro-5H-pyrrolo[2,3-

d]pyrimidin-4-amine (203) 

To the solution of 202 (100 mg, 0.24 mmol) in anhydrous DMF (1 mL) was added 

sodium hydride (12 mg, 0.5 mmol) and iodomethane (0.019 mL, 43 mg, 0.3 mmol). The 

resulted suspension was stirred under room for 30 min. Then the DMF was removed 

under vacuum and the reaction mixture was suspended in water (5 mL). Extraction with 

ethyl acetate (2 × 10 mL) and evaporation of the organic layer afford 203 in pure form 

(98 mg, 97%). Rf 0.60 (ethyl acetate/hexane, 1:2). 
1
HNMR (400 MHz, CDCl3): δ 1.85 – 

1.89 (t, 2 H, 5-H), 2.36 (s, 3 H, 2-CH3), 2.40 (s, 3 H, tosyl-CH3), 3.39 (s, 3 H, NCH3), 

3.65 (t, 2 H, 6-H), 3.72 (s, 3 H, OCH3), 6.86 – 6.88 (d, 2 H, phenyl, J = 8.84), 7.17 – 7.19 
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(d, 2 H, phenyl, J = 10.56), 7.25 – 7.29 (d, 2 H, tosyl, J = 7.2), 7.98 – 8.00 (d, 2 H, tosyl, 

J = 8.28). 

 

N-(4-methoxyphenyl)-N,2-dimethyl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-4-

amine (117) 

To the solution of 203 (90 mg, 0.21 mmol) in anhydrous methanol (10 mL) was added 

magnesium turnings (100 mg). The resulted suspension was sonicated by an ultrasound 

sonicator for 30 minutes and stirred under room temperature for additional three hours, 

during which the change of magnesium turnings into cloudy precipitate was observed. At 

the end of reaction, the precipitate was filtered through celite and washed with methanol 

(30 mL). The filtrated was evaporated to afford 117 (52 mg, 90%) in pure form. Rf 0.40 

(CH3OH/CHCl3, 1:10); m.p. 179.4 – 181.4˚C 
1
HNMR (400 MHz, DMSO-d6): δ 1.85 – 

1.89 (t, 2 H, 5-H), 2.23 (s, 3 H, 2-CH3), 3.10 – 3.15 (t, 2 H, 6-H), 3.30 (s, 1 H, NCH3), 

3.76 (s, 1 H, OCH3), 6.30 (s, 1 H, N7-H, D2O exchanged), 6.92 – 6.94 (d, 2 H, phenyl, J 

= 8.24), 7.13 – 7.15 (d, 2 H, phenyl, J = 8.2). Elemental analysis calculated for 

C15H18N4O·0.2758CH3CO2C2H5: C, 65.65; H, 6.91; N, 19.02;. Found: C, 65.41; H, 6.83; 

N, 19.14. 
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4-chloro-7-((4-methoxyphenyl)diphenylmethyl)-2-methyl-7H-pyrrolo[2,3-

d]pyrimidine (210) 

To the solution of 153 (160 mg, 1 mmol) and (chloro(4-methoxyphenyl)methylene) 

dibenzene (339 mg, 1.1 mmol) in anhydrous DMF (1 mL) was added sodium hydride (27 

mg, 1.1 mmol). The resulted suspension was stirred under room temperature for 1 hour. 

Then water (5 mL) was added to the reaction mixture and extracted with tert-butyl 

methyl ether (2 × 10 mL). The organic layer was dried over sodium sulfate and 

evaporated to afford 210 in a yellow solid (364 mg, 83%). Rf 0.65 (ethyl acetate/hexane, 

1:2). 
1
HNMR (400 MHz, DMSO): δ 2.23 (s, 3 H, 2-CH3), 3.74 (s, 3 H, OCH3), 6.63 – 

6.64 (d, 1 H, 5-H, J = 3.84), 6.89 – 6.91 (d, 2 H, phenyl, J = 8.96), 7.03 – 7.05 (d, 2 H, 

phenyl, J = 8.92), 7.10 – 7.12 (d, 1 H, 6-H, J = 6.96), 7.28 – 7.33 (m, 10 H, benzene). 

 

(±)-2-(4-methoxyphenyl)-2-(7-((4-methoxyphenyl)diphenylmethyl)-2-methyl-7H-

pyrrolo[2,3-d]pyrimidin-4-yl)acetonitrile (±-212) 

To the solution of 210 (351 mg, 0.8 mmol) and 2-(4-methoxyphenyl)acetonitrile 

(0.136 mL, 1 mmol) in anhydrous DMF (1 mL) was added sodium hydride (24 mg, 1 

mmol). The resulted suspension was stirred under room temperature for two hours. Then 

water (5 mL) was added to the reaction mixture and extracted with tert-butyl methyl ether 

(2 × 10 mL). The organic layer was evaporated and purified through flash 

chromatography to afford (±)-212 (272 mg, 62%) in a yellow solid. Rf 0.45 (ethyl 

acetate/hexane, 1:2); 
1
HNMR (400 MHz, CDCl3): δ 2.38 (s, 3 H, 2-CH3), 3.81 (s, 6 H, 

OCH3), 5.40 (s, 1 H, CH), 6.43 – 6.44 (d, 1 H, 5-H, J = 3.8), 6.78 – 6.79 (d, 2 H, phenyl, 



www.manaraa.com

124 
 

J = 8.92), 6.90 – 6.93 (d, 2 H, phenyl, J = 11.8), 7.07 (d, 1 H, 6-H, J = 2.04), 7.08 – 7.26 

(m, 10 H, benzene). 

 

(±)-4-(1-(4-methoxyphenyl)ethyl)-2-methyl-7H-pyrrolo[2,3-d]pyrimidine (119) 

To the solution of 212 (220 mg, 0.4 mmol) in anhydrous THF (1 mL) was added 

diisobutylaluminium hydride (0.5 mL, 1 M). The solution was stirred under room 

temperature for four hours. The formation of aldehyde 217 was detected on TLC and 

1
HNMR. Then methanol (5 mL) was added quench the unreacted DIBAL-H and the 

solution was evaporated to dryness. Water (5 mL) was added to the mixture followed by 

extraction with tert-butyl methyl ether (2 × 10 mL). The organic layer was evaporated 

and to the mixture containing the aldehyde 217 was added potassium hydroxide (100 mg), 

water (1 mol), ethylene glycol (5 mL) and hydrazine hydrate (1 mL). The resulted 

reaction mixture was heated at 150 °C for two hours with reflux condenser. Then the 

reaction temperature was elevated to 180 °C and the condenser was replaced with a 

Dean-Stark apparatus to collect the evaporated water and hydrazine. The temperature was 

maintained at 180 °C for three hours before cooled to room temperature. Water (5 mL) 

was added to the reaction mixture and extracted with ethyl acetate (2 × 10 mL). The 

organic layer was evaporated and purified through flash chromatography (2 – 4% 

methanol in chloroform) before 119 was obtained as a white powder. Rf 0.40 

(CH3OH/CHCl3, 1:10); m.p. 167.8 – 171.6 °C. 
1
HNMR (400 MHz, CDCl3): δ 1.27 (s, 3 

H, CH-CH3), 2.13 (s, 3 H, 2-CH3), 3.84 (s, 3 H, OCH3), 4.23 – 4.25 (q, 1 H, CH), 6.75 (d, 
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1 H, 5-H, J = 2.28), 7.05 – 7.09 (d, 2 H, phenyl, J = 13), 7.61 – 7.63 (d, 2 H, phenyl, J = 

8.68), 8.14 (s, 1 H, 6-H), 9.08 (s, 1 H, N7-H, D2O exchanged). 

 

General procedure for the synthesis of 120 – 122, 124 

To the solution of 4-methoxy-N-methylaniline 168 (151 mg, 1.1 mmol) in 1,4-dioxane 

(2 mL) was added the corresponding halo-substituted bicyclic heterocycles (1 mmol of 

218, 219, 220 or 221). Dry HCl gas was bubbled through before the solution was sealed 

in a microwave vial. The vial was placed in a microwave reactor and irradiated at 180 °C 

for six hours. At the end of the reaction, the reaction mixture was evaporated to dryness 

and suspended in saturated sodium bicarbonate solution (5 mL). The suspension was 

extracted with ethyl acetate (2 × 20 mL) and purified by flash chromatography. 

 

N-(4-methoxyphenyl)-N-methyl-1H-pyrrolo[3,2-c]pyridin-4-amine (120) 

After flash chromatography (0 – 1% methanol in chloroform), 120 was obtained as an 

off-white solid (172 mg, 68%). Rf 0.20 (CH3OH/CHCl3, 1:10); m.p. 192.9 – 195.8 °C. 

1
HNMR (400 MHz, DMSO-d6): δ 3.40 (s, 3 H, NCH3), 3.79 (2s, 3 H, OCH3), 4.88 (s, 1 

H, 3-H), 6.79 – 6.80 (d, 2 H, phenyl, J = 5.8), 6.90 – 6.91 (d, 1 H, 2-H, J = 2.12), 6.95 – 

6.97 (d, 2 H, phenyl, J = 6.96), 7.14 – 7.16 (d, 1 H, 7-H, J = 8.72), 7.76 – 7.77 (d, 1 H, 6-

H, J = 5.76), 11.16 (s, 1 H, N1-H, D2O exchanged). Elemental analysis calculated for 

C15H15N3O·0.2284H2O: C, 69.99; H, 6.05; N, 16.32. Found: C, 70.03; H, 5.89; N, 16.09. 
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N-(4-methoxyphenyl)-N-methyl-1H-pyrrolo[2,3-b]pyridin-4-amine (121) 

After flash chromatography (0 – 1% methanol in chloroform), 121 was obtained as a 

white solid (106 mg, 42%). Rf 0.48 (CH3OH/CHCl3, 1:5); m.p. 179.7 – 182.2 °C.  

1
HNMR (400 MHz, DMSO-d6): δ 3.33 (s, 3 H, NCH3), 3.79 (s, 3 H, OCH3), 5.01 (s, 1 H, 

3-H), 6.38 – 6.40 (d, 2 H, phenyl, J = 5.52), 6.91 (d, 1 H, 2-H, J = 2.12), 6.96 – 6.98 (d, 2 

H, phenyl, J = 7.52), 7.15 – 7.17 (t, 1 H, 5-H), 7.94 – 7.95 (t, 1 H, 6-H), 11.20 (s, 1 H, 

N1-H, D2O exchanged). Elemental analysis calculated for C15H15N3O·0.1169 

CH3CO2C2H5: C, 70.48; H, 6.09; N, 15.94. Found: C, 70.66; H, 6.18; N, 15.77. 

 

N-(4-methoxyphenyl)-N-methyl-1H-imidazo[4,5-c]pyridin-4-amine (122) 

After flash chromatography (0 – 1% methanol in chloroform), 122 was obtained as an 

brown oil-like liquid (157 mg, 62%). Rf 0.55 (CH3OH/CHCl3, 1:5).
 1

HNMR (400 MHz, 

DMSO-d6): δ 3.63 (s, 3 H, NCH3), 3.75 (s, 3 H, OCH3), 6.85 – 6.88 (d, 2 H, phenyl, J = 

8.84), 6.93 – 6.94 (d, 1 H, 7-H, J = 5.56), 7.08 – 7.10 (d, 2 H, phenyl, J = 8.88), 7.78 – 

7.80 (d, 1 H, 6-H, J = 5.56), 7.98 (s, 1 H, 2-H), 12.53 (s, 1 H, N1-H, D2O exchanged). 

 

N-(4-methoxyphenyl)-N-methylpyrido[3,4-b]pyrazin-5-amine (124) 

After flash chromatography (0 – 1% methanol in chloroform), 124 was obtained as an 

dark oil-like liquid (138 mg, 52%). Rf 0.40 (CH3OH/CHCl3, 1:5).
 1

HNMR (400 MHz, 

DMSO-d6): δ 3.52 (s, 3 H, NCH3), 3.73 (s, 3 H, OCH3), 6.82 – 6.85 (d, 2 H, phenyl, J = 
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8.84), 7.01 – 7.03 (d, 2 H, phenyl, J = 8.88), 7.31 – 7.32 (d, 1 H, 8-H, J = 5.76), 8.34 – 

8.35 (d, 1 H, 7-H, J = 5.76), 8.49 (d, 1 H, 3-H, J = 1.72), 8.86 (d, 1 H, 2-H, J = 1.72). 

 

tert-Butyl 4-bromo-1H-indole-1-carboxylate (223) 

To the solution of 4-bromoindole 222 (196 mg, 1 mmol) in anhydrous THF (5 mL) 

was added triethylamine (0.139 mL, 1 mmol), 4-dimethylaminopyridine (20 mg) and di-

tert-butyl dicarbonate (240 mg, 1.1 mmol). The reaction mixture was stirred under room 

temperature for four hours. At the end of reaction, methanol (5 mL) was added to the 

solution to quench the unreacted Boc anhydride. The reaction mixture was then 

evaporated to dryness and suspended in water (10 mL). After extraction with tert-butyl 

methyl ether (2 × 20 mL), the organic layer was dried and evaporated to give 233 as a 

colorless liquid (275 mg, 93%). Rf 0.80 (ethyl acetate/hexane, 1:2). 
1
HNMR (400 MHz, 

DMSO-d6): δ 1.64 (s, 9 H, Boc-CH3), 6.67 – 6.68 (d, 1 H, 3-H, J = 3.72), 7.26 – 7.31 (t, 

1 H, 6-H), 7.48 – 7.49 (d, 1 H, 6-H, J = 7.72), 7.80 – 7.81 (d, 1 H, 2-H, J = 3.76), 8.08 – 

8.10 (d, 1 H, 5-H, J = 8.32). 

 

4-Bromo-1-((4-methoxyphenyl)diphenylmethyl)-1H-indole (224) 

To the solution of 4-bromoindole 222 (196 mg, 1 mmol) and (chloro(4-

methoxyphenyl)methylene) dibenzene (339 mg, 1.1 mmol) in anhydrous DMF (1 mL) 

was added sodium hydride (27 mg, 1.1 mmol). The resulted suspension was stirred under 

room temperature for 1 hour. Then water (5 mL) was added to the reaction mixture and 
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extracted with tert-butyl methyl ether (2 × 10 mL). The organic layer was dried over 

sodium sulfate and evaporated to afford 224 in a white solid (421 mg, 90%). Rf 0.70 

(ethyl acetate/hexane, 1:2). 
1
HNMR (400 MHz, DMSO): δ 3.74 (s, 3 H, OCH3), 6.40 – 

6.42 (d, 1 H, 3-H, J = 6.84), 6.49 – 6.50 (d, 2 H, phenyl, J = 3.96), 6.70 – 6.73 (t, 1 H, 6-

H), 6.92 – 7.11 (m, 15 H, aromatic H). 

 

tert-butyl 4-((4-methoxyphenyl)(methyl)amino)-1H-indole-1-carboxylate (225) 

Into a microwave vial was added the Boc-protected 223 (236 mg, 0.8 mmol), 4-

methoxy-N-methylaniline 168 (137 mg, 1 mmol), palladium acetate (11.2 mg, 5 mol%), 

Xphos (47.6 mg, 10 mol%), potassium tert-butoxide (112 mg, 1 mmol). The vial was 

sealed, connected to vacuum to remove the oxygen and back-filled with nitrogen. After 

three rounds of vacuum-fill cycle, toluene (3 mL) was injected through the polymer 

septum. The vial was then place in a microwave reactor and irradiated at 140 °C for four 

hours. At the end of the reaction, ethyl acetate (10 mL) was added to the vial and the 

mixture was filtered. The filtrate was evaporated to dryness and purified through flash 

chromatography (0 – 10% ethyl acetate in hexane) before 225 was afforded as a white 

solid (180 mg, 64%). Rf 0.55 (ethyl acetate/hexane, 1:2). 
1
HNMR (400 MHz, DMSO-d6): 

δ 1.61 (s, 9 H, Boc-CH3), 3.28 (s, 3 H, NCH3), 3.70 (s, 3 H, OCH3), 5.86 – 5.87 (d, 1 H, 

3-H, J = 3.80), 6.83 (s, 1h, 5-H), 6.91 – 6.93 (d, 2 H, phenyl, J = 7.76), 7.26 – 7.31 (t, 1 H, 

6-H), 7.43 – 7.44 (d, 1 H, 2-H, J = 3.8), 7.74 – 7.77 (d, 2 H, phenyl, J = 8.28), 8.32 (s, 1 

H, 7-H). 
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N-(4-methoxyphenyl)-1-((4-methoxyphenyl)diphenylmethyl)-N-methyl-1H-indol-4-

amine (226) 

Into a microwave vial was added the N1-protected 224 (374 mg, 0.8 mmol), 4-

methoxy-N-methylaniline 168 (137 mg, 1 mmol), palladium acetate (11.2 mg, 5 mol%), 

Xphos (47.6 mg, 10 mol%), potassium tert-butoxide (112 mg, 1 mmol). The vial was 

sealed, connected to vacuum to remove the oxygen and back-filled with nitrogen. After 

three rounds of vacuum-fill cycle, toluene (3 mL) was injected through the polymer 

septum. The vial was then place in a microwave reactor and irradiated at 140 °C for four 

hours. At the end of the reaction, ethyl acetate (10 mL) was added to the vial and the 

mixture was filtered. The filtrate was evaporated to dryness and purified through flash 

chromatography (0 – 10% ethyl acetate in hexane) before 226 was afforded as a pale 

yellow solid (318 mg, 76%). Rf 0.60 (ethyl acetate/hexane, 1:2). 
1
HNMR (400 MHz, 

CDCl3): δ 3.40 (s, 3 H, NCH3), 3.80 (s, 3 H, OCH3), 3.82 (s, 3 H, OCH3), 5.93 – 5.94 (d, 

1 H, 3-H, J = 3.36), 6.26 – 6.28 (d, 2 H, phenyl, J = 8.16), 6.71 – 7.19 (m, 20 H, aromatic 

H). 

 

N-(4-methoxyphenyl)-N-methyl-1H-indol-4-amine (123) 

To the solution of 225 or 226 (0.5 mmol) in THF (2 mL) under 0 °C was added 

trifluoroacetic acid (0.5 mL). The reaction mixture was continued to stirred under 0 °C 

for one hour before evaporated to dryness. Saturated sodium bicarbonate solution (5 mL) 

was added to the mixture. After extraction with tert-butyl methyl ether (2 × 20 mL), the 

organic layer was evaporated and purified through flash chromatography (0 – 10% ethyl 



www.manaraa.com

130 
 

acetate in hexane) before 123 was obtained as an oil-like liquid (115 mg, 92%). Rf 0.52 

(CH3OH/CHCl3, 1:10). 
1
HNMR (400 MHz, DMSO-d6): δ 3.28 (s, 3 H, NCH3), 3.69 (s, 3 

H, OCH3), 5.71 – 5.72 (d, 1 H, 3-H, J = 3.76), 6.67 – 6.68 (d, 2 H, phenyl, J = 7.28), 6.79 

– 7.11 (m, 5 H, aromatic H), 8.33 (s, 1 H, 7-H), 11.03 (s, 1 H, N1-H, D2O exchanged). 

 

5-methyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (38) 

To the solution of hydroxyacetone (6.85 mL, 7.4 g, 0.1 mol) and triethylamine (14 mL) 

in methanol (70 mL) was slowly added malononitrile (6.30 mL, 6.61 g, 0.1 mol). The 

resulted dark red solution was stirred under room temperature for 30 min. After 

evaporating the solvent and dried under vacuum, the residue containing the furan 36 was 

dissolved in anhydrous methanol (120 mL). To the resulted solution was added guanidine 

carbonate (5.4 g, 0.6 mol) and sodium methoxide (3.24 g, 0.6 mol) and reflux for 24 

hours. Then the solvent was evaporated and the residue was purified with column 

chromatography (2 – 5% methanol in chloroform) to afford 38 as a yellow solid (5.05 g, 

31% over two steps). Rf 0.35 (CH3OH/CHCl3, 1:5). 
1
HNMR (300 MHz, DMSO-d6): δ 

2.23 (s, 3 H, 5-CH3), 5.65 (s, 2 H, 4-NH2, D2O exchanged), 6.24 (s, 2 H, 2-NH2, D2O 

exchanged), 6.48 (s, 1 H, 6-H), 10.32 (s, 1 H, N7-H, D2O exchanged). 

 

5-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (43) 

To the solution of acetamide 39 (2.30 g, 20 mmol) and malononitrile (1.32 g, 20 mmol) 

in methanol (10 mL) was slowly added sodium hydroxide (2 N solution in water) until 
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pH 12. The reaction mixture was stirred under 50 °C for one hour. Then hydrochloric 

acid (1 N) was added to adjust the pH to 7. After the evaporation of methanol, the 

remaining mixture was extracted with ethyl acetate (2 × 20 mL). The organic layer 

containing the pyrrole 40 was dried with sodium sulfate before evaporated to dryness. 

Then the residue was added triethyl orthoformate (5 mL) and refluxed for two hours. At 

the end of the reaction, the remaining triethyl orthoformate was removed under vacuum 

and the residue containing the ethoxyimine 41 was dissolved in 7 N solution of ammonia 

in methanol (15 mL) at 0 °C. The solution was then sealed in a microwave vessel and 

stirred under room temperature for 12 hours. After removing the methanol under vacuum, 

the residue containing 42 was dissolved in anhydrous ethanol (10 mL) and added sodium 

methoxide (1.08 g, 20 mmol). The resulted mixture was reflux for two hours before 

evaporated to dryness and purified through column chromatography (2 – 5% methanol in 

chloroform) to afford 43 as a yellow solid (355 mg, 12% over four steps).  Rf 0.50 

(CH3OH/CHCl3, 1:5). 
1
HNMR (300 MHz, DMSO-d6): δ 2.33 (s, 3 H, 6-CH3), 6.40 (s, 2 

H, 4-NH2, D2O exchanged), 6.80 (s, 1 H, 6-H), 7.95 (s, 1 H, 2-H), 11.12 (s, 1 H, N7-H, 

D2O exchanged). 

 

General procedure for the synthesis of target compounds 130 – 135 

To the solution of pyrrolo[2,3-d]pyrimidine 38 or 43 (1 mmol) and the thiophenol (2 

mmol) in ethanol (10 mL) under reflux was added iodine (254 mg, 2 mmol) in several 

portions. The reflux continued for six hours before cooled to room temperature and added 

1 N sodium thiosulfate solution in water (10 mL). After the evaporation of ethanol, the 
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remaining water layer was extracted with ethyl acetate (2 × 20 mL). The organic layer 

was then evaporated to dryness and purified through column chromatography. The 

purified intermediate 226 – 231 was dissolved in anhydrous DMF (1 mL). To the solution 

was added cesium carbonate (326 mg, 1 mmol) and 5-chloropent-1-yne 232 (0.11 mL, 

103 mg, 1 mmol). The reaction mixture was sealed in a microwave vial and irradiated in 

a microwave reactor at 80 °C for two hours. At the end of the reaction, the solvent was 

removed under vacuum and the residues were suspended in water (5 mL). The suspension 

was extracted by ethyl acetate (2 × 15 mL) before the organic layer was evaporated and 

purified through column chromatography. 

 

6-((2-methoxyphenyl)thio)-5-methyl-7-(pent-4-yn-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-

4-amine (130) 

After column chromatography (0 – 1% methanol in chloroform), 130 was afforded as 

a yellow solid (92 mg, 25% over two steps). Rf 0.40 (CH3OH/CHCl3, 1:10); m.p. 116.9 – 

119.2 °C. 
1
HNMR (400 MHz, DMSO-d6): δ 1.69 – 1.73 (t, 2 H, CH2), 2.07 – 2.11 (m, 2 

H, CH2), 2.47 (s, 3 H, 5-CH3), 2.76 (s, 1 H, CH), 3.69 (s, 3 H, OCH3), 4.14 (t, 2 H, CH2), 

6.50 – 6.52 (d, 1 H, phenyl, J = 7.8), 6.55 – 6.56 (m, 1 H, phenyl), 6.75 – 6.77 (d, 1 H, 

phenyl, J = 8.08), 6.88 (s, 2 H, 4-NH2, D2O exchanged), 7.19 – 7.23 (t, 1 H, phenyl), 8.10 

(s, 1 H, 2-H). HRMS m/z calculated for C19H20N4OS [M+H]
+
, 353.1431; found, 

353.1431. Elemental analysis calculated for C19H20N4OS: C, 64.75; H, 5.72; N, 15.90; S, 

9.10. Found: C, 64.48; H, 5.87; N, 15.55; S, 9.13. 
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6-((3-methoxyphenyl)thio)-5-methyl-7-(pent-4-yn-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-

4-amine (131) 

After column chromatography (0 – 1% methanol in chloroform), 131 was afforded as 

a yellow solid (95 mg, 27% over two steps). Rf 0.40 (CH3OH/CHCl3, 1:10); m.p. 130.2 – 

133.0 °C. 
1
HNMR (400 MHz, DMSO-d6): δ 1.71 – 1.74 (t, 2 H, CH2), 2.07 – 2.10 (m, 2 

H, CH2), 2.41 (s, 3 H, 5-CH3), 2.73 (s, 1 H, CH), 3.90 (s, 3 H, OCH3), 4.09 – 4.13 (t, 2 H, 

CH2), 6.29 – 6.31 (d, 1 H, phenyl, J = 7.6), 6.79 – 6.83 (m, 1 H, phenyl), 6.86 (s, 2 H, 4-

NH2, D2O exchanged), 7.03 – 7.05 (d, 1 H, phenyl, J = 7.72), 7.13 – 7.15 (t, 1 H, phenyl), 

8.10 (s, 1 H, 2-H). HRMS m/z calculated for C19H20N4OS [M+H]
+
, 353.1431; found, 

353.1438. Elemental analysis calculated for C19H20N4OS·0.3776CH3COCH3: C, 64.59; H, 

5.99; N, 14.97; S, 8.57. Found: C, 64.70; H, 5.95; N, 14.98; S, 8.48. 

 

6-((4-methoxyphenyl)thio)-5-methyl-7-(pent-4-yn-1-yl)-7H-pyrrolo[2,3-

d]pyrimidine-2,4-diamin (132) 

After column chromatography (0 – 2% methanol in chloroform), 132 was afforded as 

a white solid (149 mg, 40% over two steps). Rf 0.40 (CH3OH/CHCl3, 1:10); m.p. 147.2 – 

149.1 °C. 
1
HNMR (300 MHz, DMSO-d6): δ 1.65 (s, 2 H, CH2), 2.06 (s, 3 H, 5-CH3), 

2.42 (s, 2 H, CH2), 2.76 (s, 1 H, CH), 3.69 (s, 3 H, OCH3), 3.94 (s, 2 H, CH2), 5.76 (s, 2 

H, 4-NH2, D2O exchanged), 6.36 (s, 2 H, 2-NH2, D2O exchanged), 6.86 – 6.88 (d, 2 H, 

phenyl, J = 6.75), 6.99 – 7.01 (d, 2 H, phenyl, J = 6.84). HRMS m/z calculated for 

C19H21N5OS [M+H]
+
, 368.1540; found, 368.1545. Elemental analysis calculated for 

C19H21N5OS·0.2287H2O: C, 61.41; H, 5.82; N, 18.85; S, 8.63. Found: C, 61.39; H, 5.61; 

N, 18.84; S, 8.67. 
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6-((3,4-dimethoxyphenyl)thio)-5-methyl-7-(pent-4-yn-1-yl)-7H-pyrrolo[2,3-

d]pyrimidine-2,4-diamine (133) 

After column chromatography (0 – 2% methanol in chloroform), 133 was afforded as 

a white solid (135 mg, 34% over two steps). Rf 0.45 (CH3OH/CHCl3, 1:10); m.p. 162.5 – 

187.5 °C. 
1
HNMR (400 MHz, DMSO-d6): δ 1.65 (t, 2 H, CH2), 2.09 (s, 3 H, 5-CH3), 

2.42 (t, 2 H, CH2), 2.79 (s, 1 H, CH), 3.38 (s, 3 H, OCH3), 3.69 (s, 3 H, OCH3), 3.94 – 

3.98 (s, 2 H, CH2), 5.75 (s, 2 H, 4-NH2, D2O exchanged), 6.32 (s, 2 H, 2-NH2, D2O 

exchanged), 6.45 – 6.48 (dd, 1 H, phenyl), 6.74 – 6.75 (d, 1 H, phenyl, J = 2.12), 6.86 – 

6.89 (d, 1 H, phenyl, J = 8.52). HRMS m/z calculated for C20H23N5O2S [M+H]
+
, 

398.1645; found, 398.1653. Elemental analysis calculated for C20H23N5O2S: C, 60.43; H, 

5.83; N, 17.62; S, 8.07. Found: C, 60.28; H, 5.82; N, 17.54; S, 8.00. 

 

5-methyl-7-(pent-4-yn-1-yl)-6-((3,4,5-trimethoxyphenyl)thio)-7H-pyrrolo[2,3-

d]pyrimidine-2,4-diamine (134) 

After column chromatography (0 – 1% methanol in chloroform), 134 was afforded as 

a white solid (128 mg, 30% over two steps). Rf 0.45 (CH3OH/CHCl3, 1:10); m.p. 146.5 – 

149.5 °C. 
1
HNMR (300 MHz, DMSO-d6): δ 1.17 – 1.22 (m, 2 H, CH2), 1.68 (m, 2 H, 

CH2), 2.07 (m, 3 H, 5-CH3), 2.42 (s, 2 H, CH2), 2.74 (s, 1 H, CH), 3.06 – 3.84 (m, 9 H, 

OCH3), 3.98 (s, 2 H, CH2), 5.79 (s, 2 H, 4-NH2, D2O exchanged), 6.30 (s, 2 H, 2-NH2, 

D2O exchanged), 6.40 (s, 2 H, phenyl). HRMS m/z calculated for C21H25N5O3S [M+H]
+
, 

428.1751; found, 428.1763. Elemental analysis calculated for C21H25N5O3S·0.4339 

CH3COCH3: C, 59.17; H, 6.15; N, 15.47; S, 7.08. Found: C, 59.38; H, 6.18; N, 15.48; S, 

8.16. 
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6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)thio)-7-(3-(isopropylamino)propyl)-5-

methyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (135) 

After column chromatography (0 – 2% methanol in chloroform), 135 was afforded as 

a white solid (124 mg, 30% over two steps). Rf 0.50 (CH3OH/CHCl3, 1:10); m.p. 178.5 – 

182.2 °C. 
1
HNMR (400 MHz, DMSO-d6): δ 0.86 – 0.87 (d, 6 H, CH3, J = 6.16), 1.64 (t, 

2 H, CH2), 2.30 (t, 2 H, CH2), 2.48 (s, 3 H, 5-CH3), 2.49 (s, 1 H, CH2), 4.01 (t, 1 H, CH), 

4.17 (m, 5 H, OCH2 and NH), 6.45 (s, 1 H, phenyl), 6.46 – 6.47 (d, 1 H, phenyl, J = 2.2), 

6.78 – 6.80 (d, 1 H, phenyl, J = 8.44), 6.81 (s, 2 H, 4-NH2, D2O exchanged), 8.06 (s, 1 H, 

2-H). HRMS m/z calculated for C21H27N5O2S [M+H]
+
, 414.1958; found, 414.1975. 

Elemental analysis calculated for C21H27N5O2S·0.1107CH3(CH2)4CH3·1.3465H2O: C, 

58.17; H, 7.04; N, 15.66; S, 7.17. Found: C, 58.19; H, 6.67; N, 15.47; S, 7.15. 

 

General procedure for the synthesis of target compounds 136 – 143 

To a microwave vial was added pyrrolo[2,3-d]pyrimidine 172 (266 mg, 1 mmol), 

cesium carbonate (326 mg, 1 mmol) and corresponding alkylating reagent (1 mmol). 

DMF (1 mL) was added to the mixture before the vial was sealed and placed in a 

microwave reactor. The reaction was irradiated at 80 °C for three hours. At the end of the 

reaction, the solvent was removed under vacuum and the residues were suspended in 

water (5 mL). The suspension was extracted by ethyl acetate (2 × 15 mL). After the 

organic layer was evaporated, the residue was dissolved in methanol (5 mL) and was 

added 1 N sodium hydroxide solution. The mixture was refluxed for three hours. 

Methanol was removed by vacuum and the remaining water suspension was extracted 

with ethyl acetate (2 × 20 mL). The organic layer was evaporated and purified through 
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column chromatography to afford the final compounds. 

 

7-Benzyl-4-chloro-6-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amine (136) 

After column chromatography (0 – 20% ethyl acetate in hexane), 136 was obtained as 

a pale yellow powder (228 mg, 84%). Rf 0.75 (ethyl acetate/hexane 1:1); m.p. 144.1 – 

145.6 °C. 
1
HNMR (500 MHz, DMSO-d6): δ 2.21 (s, 3 H, 6-CH3), 5.29 (s, 1 H, CH2), 

6.13 (s, 1 H, 5-H), 6.55 (s, 2 H, 2-NH2, D2O exchanged), 7.05 – 7.06 (d, 1 H, phenyl, J = 

7.2), 7.24 – 7.33 (m, 4 H, phenyl). HRMS m/z calculated for C14H13ClN [M+H]
+
, 

273.0902; found, 273.0887. Elemental analysis calculated for C14H13ClN4·0.0736 

CH3(CH2)4CH3: C, 62.15; H, 5.07; N, 20.08; Cl, 12.70. Found: C, 62.19; H, 4.96; N, 

20.05; Cl, 12.71. 

 

4-chloro-7-((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)-6-methyl-7H-pyrrolo[2,3-

d]pyrimidin-2-amine (137) 

After column chromatography (0 – 20% ethyl acetate in hexane), 137 was obtained as 

a yellow powder (265 mg, 80%). Rf 0.50 (CH3OH/CHCl3, 1:10); m.p. 184.3 – 186.7 °C. 

1
HNMR (500 MHz, DMSO-d6): δ 2.15 (s, 6 H, pyridyl-CH3), 2.29 (s, 3 H, 6-CH3), 3.74 

(s, 3 H, OCH3), 5.30 (s, 1 H, CH2), 6.08 (s, 1 H, 5-H), 6.40 (s, 2 H, 2-NH2, D2O 

exchanged), 7.99 (s, 1 H, pyridyl). HRMS m/z calculated for C16H18ClN5O [M+H]
+
, 

332.1273; found, 332.1273. Elemental analysis calculated for C16H18ClN5O·0.0914 

CH3(CH2)4CH3: C, 58.51; H, 5.72; N, 20.62; Cl, 10.44. Found: C, 58.41; H, 5.63; N, 

20.44; Cl, 10.44. 
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4-chloro-6-methyl-7-((6-methylpyridin-2-yl)methyl)-7H-pyrrolo[2,3-d]pyrimidin-2-

amine (138) 

After column chromatography (0 – 30% ethyl acetate in hexane), 138 was obtained as 

a white powder (201 mg, 70%). Rf 0.45 (CH3OH/CHCl3, 1:10); m.p. 176.0 – 179.8 °C. 

1
HNMR (500 MHz, CDCl3): δ 2.30 (s, 3 H, 6-CH3), 2.66 (s, 3 H, pyridyl-CH3), 4.87 (s, 1 

H, CH2), 5.49 (s, 1 H, 5-H), 6.22 (s, 2 H, 2-NH2, D2O exchanged), 6.57 (m, 1 H, pyridyl), 

7,13 – 7.14 (m, 1 H, pyridyl), 7.57 (m, 1 H, pyridyl). HRMS m/z calculated for 

C14H14ClN [M+H]
+
, 288.1010; found, 288.0993. Elemental analysis calculated for 

C14H14ClN5·0.0339CHCl3·0.0818CH3(CH2)4CH3: C, 58.38; H, 5.12; N, 23.43; Cl, 13.07. 

Found: C, 58.43; H, 4.92; N, 23.39; Cl, 13.08. 

 

4-chloro-7-((3,4-dimethoxypyridin-2-yl)methyl)-6-methyl-7H-pyrrolo[2,3-

d]pyrimidin-2-amine (139) 

After column chromatography (0 – 30% ethyl acetate in hexane), 139 was obtained as 

a pale yellow powder (250 mg, 75%). Rf 0.60 (CH3OH/CHCl3, 1:10); m.p. 183.3 – 

186.5 °C. 
1
HNMR (400 MHz, DMSO-d6): δ 2.21 (s, 3 H, 6-CH3), 3.85 (s, 3 H, OCH3), 

3.89 (s, 3 H, OCH3), 5.36 (s, 1 H, CH2), 6.07 (s, 1 H, 5-H), 6.42 (s, 2 H, 2-NH2, D2O 

exchanged), 7.03 – 7.05 (d, 1 H, pyridyl, J = 5.56), 8.00 – 8.01 (d, 1 H, pyridyl, J = 5.52). 

HRMS m/z calculated for C15H16ClN5O2 [M+H]
+
, 334.1065; found, 334.1050. Elemental 

analysis calculated for C15H16ClN5O2·0.3245CH3COCH3: C, 54.41; H, 5.13; N, 19.86; Cl, 

10.05. Found: C, 54.41; H, 4.93; N, 19.65; Cl, 10.35. 
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4-chloro-7-((6-chloropyridin-3-yl)methyl)-6-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-

amine (140) 

After column chromatography (0 – 20% ethyl acetate in hexane), 140 was obtained as 

a yellow powder (252 mg, 82%). Rf 0.60 (CH3OH/CHCl3, 1:10); m.p. 165.3 – 168.9 °C. 

1
HNMR (500 MHz, DMSO-d6): δ 2.25 (s, 3 H, 6-CH3), 5.31 (s, 1 H, CH2), 6.14 (s, 1 H, 

5-H), 6.61 (s, 2 H, 2-NH2, D2O exchanged), 7.46 – 7.50 (m, 2 H, pyridyl). 8.29 (s, 1 H, 

pyridyl). HRMS m/z calculated for C13H11Cl2N5 [M+H]
+
, 308.0464; found, 308.0463. 

Elemental analysis calculated for C13H11Cl2N5·0.0306CHCl3·0.1268CH3(CH2)4CH3: C, 

51.32; H, 4.00; N, 21.70; Cl, 22.98. Found: C, 51.26; H, 3.68; N, 21.53; Cl, 22.87. 

 

4-chloro-6-methyl-7-(pyridin-2-ylmethyl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine (141) 

After column chromatography (0 – 20% ethyl acetate in hexane), 141 was obtained as 

a pale yellow powder (213 mg, 78%). Rf 0.60 (CH3OH/CHCl3, 1:10); m.p. 176.6 – 

178.1°C. 
1
HNMR (500 MHz, CDCl3): δ 2.30 (s, 3 H, 6-CH3), 5.47 (s, 1 H, CH2), 6.22 (s, 

1 H, 5-H), 6.88 – 6.90 (s, 2 H, 2-NH2, D2O exchanged), 7.27 (m, 2 H, pyridyl), 7.66 – 

7.67 (m, 1 H, pyridyl), 8.60 (m, 1 H, pyridyl). HRMS m/z calculated for C13H12ClN5 

[M+H]
+
, 274.0854; found, 274.0839. Elemental analysis calculated for 

C13H12ClN5·0.1135CH3(CH2)4CH3: C, 57.96; H, 4.83; N, 24.70; Cl, 12.51. Found: C, 

57.88; H, 4.70; N, 24.63; Cl, 12.36. 

 

General procedure for the synthesis of target compounds 144 – 149 

To the 4-chloro analogs (0.5 mmol of 136 – 141) in a bomb vessel was added 
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ammonia in methanol (7 N). The vessel was immediately sealed and heated in an oil bath 

to 145 °C. The reaction temperature was maintain at 145 °C for 12 hours before cool to 

room temperature. The methanol was evaporated and the residue was purified through 

column chromatography to afford the target compounds. 

 

7-benzyl-6-methyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (144) 

After column chromatography (0 – 20% ethyl acetate in hexane), 144 was obtained as 

a pale yellow powder (92 mg, 73%). Rf 0.30 (ethyl acetate/hexane 1:1); m.p. 176.2 – 

178.0 °C. 
1
HNMR (500 MHz, DMSO-d6): δ 2.11 (s, 3 H, 6-CH3), 5.18 (s, 1 H, CH2), 

5.46 (s, 2 H, 4-NH2 D2O exchanged), 6.11 (s, 1 H, 5-H), 6.40 (s, 2 H, 2-NH2, D2O 

exchanged), 7.02 – 7.03 (d, 1 H, phenyl, J = 7.25), 7.22 – 7.30 (m, 4 H, phenyl). HRMS 

m/z calculated for C14H15N5 [M+H]
+
, 254.1400; found, 254.1399. Elemental analysis 

calculated for C14H15N5·0.1186CH3CO2C2H5: C, 65.91; H, 6.09; N, 26.55. Found: C, 

65.64; H, 6.04; N, 26.66. 

 

7-((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)-6-methyl-7H-pyrrolo[2,3-

d]pyrimidine-2,4-diamine (145) 

After column chromatography (0 – 2% methanol in chloroform), 145 was obtained as 

a white powder (121.68 mg, 78%). Rf 0.10 (CH3OH/CHCl3, 1:10); m.p. deg. 151.4 °C. 

1
HNMR (500 MHz, DMSO-d6): δ 2.16 (s, 6 H, pyridyl-CH3), 2.24 (s, 3 H, 6-CH3), 3.72 

(s, 3 H, OCH3), 5.20 (s, 1 H, CH2), 6.05 (s, 1 H, 5-H), 5.40 (s, 2 H, 4-NH2, D2O 

exchanged), 6.38 (s, 2 H, 2-NH2, D2O exchanged), 8.02 (s, 1 H, pyridyl). HRMS m/z 

calculated for C16H20N6O [M+H]
+
, 313.1771; found, 313.1769. Elemental analysis 
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calculated for C16H20N6O·0.6671CH3OH·0.2004CHCl3: C, 56.64; H, 6.44; N, 23.50. 

Found: C, 56.64; H, 6.45; N, 23.50. 

 

6-methyl-7-((6-methylpyridin-2-yl)methyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-

diamine (146) 

After column chromatography (0 – 30% ethyl acetate in hexane), 146 was obtained as 

a white powder (87 mg, 65%). Rf 0.30 (CH3OH/CHCl3, 1:10); m.p. 170.3 – 173.6 °C. 

1
HNMR (500 MHz, DMSO-d6): δ 2.14 (s, 3 H, 6-CH3), 2.46 (s, 3 H, pyridyl-CH3), 5.18 

(s, 1 H, CH2), 5.42 (s, 2 H, 4-NH2, D2O exchanged), 6.14 (s, 1 H, 5-H), 6.37 (s, 2 H, 2-

NH2, D2O exchanged), 6.57 (m, 1 H, pyridyl), 7,13 – 7.14 (m, 1 H, pyridyl), 7.57 (m, 1 H, 

pyridyl). HRMS m/z calculated for C14H16N6 [M+H]
+
, 269.1509; found, 269.1506. 

Elemental analysis calculated for C14H16N6·1.1858H2O: C, 58.05; H, 6.39; N, 29.01. 

Found: C, 58.13; H, 6.43; N, 28.85. 

 

7-((3,4-dimethoxypyridin-2-yl)methyl)-6-methyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-

diamine (147) 

After column chromatography (0 – 30% ethyl acetate in hexane), 147 was obtained as 

a pale yellow powder (111 mg, 71%). Rf 0.15 (CH3OH/CHCl3, 1:10); m.p. 215.7 – 

218.5 °C. 
1
HNMR (500 MHz, DMSO-d6): δ 2.12 (s, 3 H, 6-CH3), 3.83 (s, 3 H, OCH3), 

3.88 (s, 3 H, OCH3), 5.25 (s, 1 H, CH2), 5.30 (s, 2 H, 4-NH2, D2O exchanged), 6.03 (s, 1 

H, 5-H), 6.29 (s, 2 H, 2-NH2, D2O exchanged), 7.01 – 7.02 (d, 1 H, pyridyl, J = 5.48), 

8.00 – 8.02 (d, 1 H, pyridyl, J = 5.52). HRMS m/z calculated for C15H18N6O2 [M+H]
+
, 
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315.1564; found, 315.1566. Elemental analysis calculated for C15H18N6O2·0.4996H2O: C, 

55.72; H, 5.92; N, 25.99. Found: C, 55.69; H, 6.07; N, 26.08. 

 

7-((6-chloropyridin-3-yl)methyl)-6-methyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine 

(148) 

After column chromatography (0 – 20% ethyl acetate in hexane), 148 was obtained as 

a yellow powder (89 mg, 62%). Rf 0.30 (CH3OH/CHCl3, 1:10); m.p. 168.1 – 170.4 °C. 

1
HNMR (500 MHz, DMSO-d6): δ 2.15 (s, 3 H, 6-CH3), 5.20 (s, 1 H, CH2), 5.51 (s, 2 H, 

4-NH2, D2O exchanged), 6.11 (s, 1 H, 5-H), 6.44 (s, 2 H, 2-NH2, D2O exchanged), 7.46  

(d, 2 H, pyridyl, J = 1.32). 8.22 (s, 1 H, pyridyl). Elemental analysis calculated for 

C13H13ClN6·0.1487CH3COCH3: C, 54.31; H, 4.71; N, 28.26; Cl, 11.92. Found: C, 54.07; 

H, 4.73; N, 28.31; Cl, 11.65. 

 

6-methyl-7-(pyridin-2-ylmethyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (149) 

After column chromatography (0 – 30% ethyl acetate in hexane), 141 was obtained as 

a pale yellow powder (107 mg, 85%). Rf 0.20 (CH3OH/CHCl3, 1:10); m.p. 186.8 – 

189.5 °C. 
1
HNMR (500 MHz, DMSO-d6): δ 2.14 (s, 3 H, 6-CH3), 5.24 (s, 1 H, CH2), 

5.45 (s, 2 H, 4-NH2, D2O exchanged), 6.13 (s, 1 H, 5-H), 6.41 (s, 2 H, 2-NH2, D2O 

exchanged), 6.68 – 6.70 (d, 1 H, pyridyl, J = 7.8), 7.26 (m, 1 H, pyridyl), 7.69 (m, 1 H, 

pyridyl), 8.51 – 8.52 (d, 1 H, pyridyl, J = 4.25). HRMS m/z calculated for C13H14N6 

[M+H]
+
, 255.1353; found, 255.1350. Elemental analysis calculated for C13H14N6·0.5153 

C2H5OH: C, 60.61; H, 6.20; N, 30.23. Found: C, 60.33; H, 5.89; N, 30.23. 
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6-methoxy-1-(2-methyl-7-tosyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1,2,3,4-

tetrahydroquinoline (150) 

To the stirred solution of 110 (147 mg, 0.5 mmol) in dichloromethane (5 mL) was 

added sodium hydroxide (80 mg, 2 mmol) and tetrabutylammonium hydrogensulfate 

(33.9 mg, 0.1 mmol). After the solution turned clear, tosyl chloride (190 mg, 1 mmol) 

was added and the reaction mixture was stirred at room temperature for six hours. At the 

end of the reaction, the organic layer was collected and washed with water (2 × 5 mL). 

The solvent was evaporated under vacuum and the mixture was purified through flash 

chromatography (0 – 20% ethyl acetate in hexane) before 151 was obtained as a pale 

yellow solid (179 mg, 80%). Rf 0.75 (ethyl acetate/hexane, 1:1); m.p. 123.9 – 126.1 °C. 

1
HNMR (500 MHz, DMSO-d6): δ 1.82 (q, 2 H, CH2), 2.37 (s, 3 H, tosyl-CH3), 2.47 (s, 3 

H, 2-CH3), 2.72 (t, 2 H, CH2), 3.76 (s, 3 H, OCH3), 3.99 (t, 2 H, NCH2), 5.59 – 5.60 (d, 1 

H, 5-H, J = 4.05), 6.71 – 6.73 (d, 1 H, phenyl, J = 8.85), 6.85 – 6.86 (d, 1 H, 6-H, J = 

3.05), 7.02 – 7.04 (d, 1 H, phenyl, J = 8.75), 7.40 – 7.41 (d, 1 H, phenyl, J = 4.05), 7.44 – 

7.46 (d, 2 H, tosyl, J = 8.15). 8.02 – 8.03  (d, 2 H, tosyl, J = 8.35). HRMS m/z calculated 

for C24H24N4O3S [M+H]
+
, 449.1642; found, 449.1645. Elemental analysis calculated for 

C24H24N4O3S: C, 64.27; H, 5.39; N, 12.49; S, 7.15. Found: C, 64.12; H, 5.48; N, 12.47; S, 

7.28. 
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VI. Summary 

For the projects in this dissertation, over one hundred and twenty new compounds have been 

synthesized and characterized. Among them, fifty-six compounds have been submitted for 

biological evaluation as microtubule-binding agents or HSP90 inhibitors. These compounds are 

listed below. 

 

Compounds have been evaluated as microtubule-binding agents: 

1) N-(4-methoxyphenyl)-2-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (90) 

2) N-(4-methoxyphenyl)-N,2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (91) 

3) N-(4-methoxyphenyl)-N,2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine hydrochloride 

(91·HCl) 

4) N-(3-methoxyphenyl)-N,2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (92) 

5) N-(3-methoxyphenyl)-2-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (93) 

6) N-(2-methoxyphenyl)-N,2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (94) 

7) N-(2-methoxyphenyl)-2-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (95) 

8) N,2-dimethyl-N-(p-tolyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (96) 

9) N-(4-chlorophenyl)-N,2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (97) 

10) N-(3,4-dichlorophenyl)-N,2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (98) 

11) 4-(methyl(2-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)phenol (99) 

12) N,2-dimethyl-N-(naphthalen-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (100) 

13) 2-methyl-N-(naphthalen-2-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (101) 

14) N4
-(4-methoxyphenyl)-N

4
-methyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (102) 

15) N4
-(4-methoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (103) 
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16) N4
-(4-methoxyphenyl)-N

4
,6-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (104) 

17) N4
-(3-methoxyphenyl)-N

4
,6-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (105) 

18) N4
-(2-methoxyphenyl)-N

4
,6-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (106) 

19) N4
,6-dimethyl-N

4
-(p-tolyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (107) 

20) N4
-(4-chlorophenyl)-N

4
,6-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (108) 

21) N4
-(3,4-dichlorophenyl)-N

4
,6-dimethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (109) 

22) 6-methoxy-1-(2-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1,2,3,4-tetrahydro-quinoline 

(110) 

23) 4-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine (111) 

24) 4-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-6-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-

amine (112) 

25) 6-methoxy-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1,2,3,4-tetrahydroquinoline (113) 

26) N-(4-methoxyphenyl)-N,2,7-trimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (114) 

27) N-(4-methoxyphenyl)-N,2,7-trimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine 

hydrochloride salt (114·HCl) 

28) 7-benzyl-N-(4-methoxyphenyl)-N,2-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (115) 

29) N-(4-methoxyphenyl)-N,2-dimethyl-7-tosyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (116) 

30) N-(4-methoxyphenyl)-N,2-dimethyl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidin-4-amine 

(117) 

31) N4
-(4-methoxyphenyl)-N

4
-methyl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidine-2,4-diamine 

(118) 

32) (±)-4-(1-(4-methoxyphenyl)ethyl)-2-methyl-7H-pyrrolo[2,3-d]pyrimidine (119) 

33) N-(4-methoxyphenyl)-N-methyl-1H-pyrrolo[3,2-c]pyridin-4-amine (120) 

34) N-(4-methoxyphenyl)-N-methyl-1H-pyrrolo[2,3-b]pyridin-4-amine (121) 

35) N-(4-methoxyphenyl)-N-methyl-1H-imidazo[4,5-c]pyridin-4-amine (122) 

36) N-(4-methoxyphenyl)-N-methyl-1H-indol-4-amine (123) 
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37) N-(4-methoxyphenyl)-N-methylpyrido[3,4-b]pyrazin-5-amine (124) 

38) 6-methoxy-1-(2-methyl-7-tosyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1,2,3,4-

tetrahydroquinoline (150) 

 

Compounds have been evaluated as HSP90 inhibitors: 

39) 6-((2-methoxyphenyl)thio)-5-methyl-7-(pent-4-yn-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-

amine (130) 

40) 6-((3-methoxyphenyl)thio)-5-methyl-7-(pent-4-yn-1-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-

amine (131) 

41) 6-((4-methoxyphenyl)thio)-5-methyl-7-(pent-4-yn-1-yl)-7H-pyrrolo[2,3-d]pyrimidine-

2,4-diamine (132) 

42) 6-((3,4-dimethoxyphenyl)thio)-5-methyl-7-(pent-4-yn-1-yl)-7H-pyrrolo[2,3-

d]pyrimidine-2,4-diamine (133) 

43) 5-methyl-7-(pent-4-yn-1-yl)-6-((3,4,5-trimethoxyphenyl)thio)-7H-pyrrolo[2,3-

d]pyrimidine-2,4-diamine (134) 

44) 6-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)thio)-7-(3-(isopropylamino)propyl)-5-

methyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (135) 

45) 7-benzyl-4-chloro-6-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amine (136) 

46) 4-chloro-7-((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)-6-methyl-7H-pyrrolo[2,3-

d]pyrimidin-2-amine (137) 

47) 4-chloro-6-methyl-7-((6-methylpyridin-2-yl)methyl)-7H-pyrrolo[2,3-d]pyrimidin-2-

amine (138) 

48) 4-chloro-7-((3,4-dimethoxypyridin-2-yl)methyl)-6-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-

amine (139) 
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49) 4-chloro-7-((6-chloropyridin-3-yl)methyl)-6-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amine 

(140) 

50) 4-chloro-6-methyl-7-(pyridin-2-ylmethyl)-7H-pyrrolo[2,3-d]pyrimidin-2-amine (141) 

51) 7-benzyl-6-methyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (144) 

52) 7-((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)-6-methyl-7H-pyrrolo[2,3-d]pyrimidine-

2,4-diamine (145) 

53) 6-methyl-7-((6-methylpyridin-2-yl)methyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine 

(146) 

54) 7-((3,4-dimethoxypyridin-2-yl)methyl)-6-methyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-

diamine (147) 

55) 7-((6-chloropyridin-3-yl)methyl)-6-methyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine 

(148) 

56) 6-methyl-7-(pyridin-2-ylmethyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (149) 

 

During the course of this dissertation work, the influence of the conformation on reactivity of 

certain heterocyclic scaffold was studied. The information gleaned from these studies has led to 

an optimized synthesis of substituted 5,6-dihydropyrrolo[2,3-d]pyrimidines. An advantageous 

method of removing the tosyl from aromatic amines was identified at the same time. In addition, 

a novel, previously unknown method of removing anisyldiphenylmethyl protection on the amine 

by the use hydrazine was discovered. 

The biological evaluations of the synthesized compounds are currently in progress. The 

results of some analogs evaluated have confirmed the hypothesis proposed at the beginning of the 

project. Further, the 4-tetrahydroquinoline-substituted pyrrolo[2,3-d]pyrimidines and 5,6-dihydro-

pyrrolo[2,3-d]pyrimidines are consistently more active than the lead compound. The complete 

findings and discussion will be published in due course. 
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